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Motivation and History

Decoupling and self-normalization constitute domains that have
evolved in response to the imperative of expanding martingale
techniques to encompass high-dimensional, infinite-dimensional, and
intricate nonlinear dependency structures.

Decoupling equips us with techniques to proficiently address
dependent variables by treating them akin to independent entities.
Notably, it offers a natural framework for constructing precise
exponential inequalities tailored for self-normalized
(super-)martingales.
Prominent illustrations of self-normalized processes include the
t-statistic with dependent random variables, alongside
(self-normalized) extensions of the KOLMOGOROV’s law of the iterated
logarithm

lim sup
n→∞

|Sn|√
2nσ2loglogn

= 1 P-almost everywhere
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Decoupling

”BEHIND EVERY LIMIT
THEOREM THERE IS AN
INEQUALITY.”

This quote has been
attributed to
A.N. KOLMOGOROV.
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Complete Decoupling

Let {di}n
i=1 be a sequence of dependent random variables with E|di |< ∞.

Let {yi}n
i=1 be a sequence of independent variables where for each i , di

and yi have the same marginal distributions (denoted as di
L= yi or

di
d= yi). Since E(di) = E(yi), linearity of expectations provides the first

“complete decoupling” equality:

E
n∑

i=1
di = E

n∑
i=1

yi (1)

In complete decoupling, one compares Ef (
∑

di) to Ef (
∑

yi) for more
general functions f (·), taking the linear mapping f (x) = cx as a special
case. It remains possible to derive valuable inequalities based on specific
assumptions.
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Let the population C consist of N values c1, ..., cN (e.g. a deck of cards,
N=52), and let d1, ..., dn (n ≤ N) denote a random sample without
replacement drawn from C , and y1, ..., yn denote a random sample with
replacement from C . The random variables y1, ..., yn are i.i.d. and di

L= yi
for all i . HOEFFDING (1963, [9]) developed the following inequality:

EΦ(
∑

di) ≤ EΦ(
∑

yi). (2)

for every continuous convex function Φ.
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De la Peña extended the assumption such that for nonnegative dependent
r.v.s (d1, ..., dn), such that for each i , yi and di , have the same
distribution and {yi} is a sequence of independent random variables.

Theorem ( DE LA PEÑA, [2])
Suppose Φ is a concave nondecreasing function on [0, ∞) such that
Φ(0) = 0 and Φ(x) > 0 if x > 0, then ∃ C > 0, not depending on
anything, such that

EΦ
(∑

di
)

≤ CEΦ
(∑

yi
)

. (3)

Theorem ( DE LA PEÑA, [2])
Suppose Φ is convex and increasing on [0, ∞). Furthermore, ∃α > 0 s.t.
∀x > 0, c ≥ 2, Φ(cx) ≤ cαΦ(x). Then ∃Cα depending only on α s.t.

EΦ(
∑

di) ≥ CαEΦ(
∑

yi)
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The Origin of Tangent Decoupling

The theory of martingale inequalities has been
crucial in the development of modern probability
theory. Recently it has been expanded widely
through the introduction of the theory of
conditionally independent (tangent) decoupling.
This approach to decoupling can be traced back to
a result of Burkholder and McConnell included in
Burkholder [1] that represents a step in extending
the theory of martingales to Banach spaces.
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Construction of Tangent Sequence
Specifically, given {di}, we can construct a tangent sequence w.r.t.
Fi = σ(di , . . . , di):

First, we take d1 and y1 to be two independent copies of the same
random mechanism.
With (d1, .., di−1; y1, .., yi−1), the i-th pair of variables di and yi
comes from conditionally independent copies of the same random
mechanism given Fi−1,

and yi ’s are conditionally independent w.r.t. = Fn.
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Tangent Decoupling: M.G.F.

De la Peña [3] introduced the tangent decoupling equality, which compares
the sum of dependent variables with the corresponding conditional
independent sum.

Theorem
If yi is a decoupled F ′-tangent version of di , then for all r.v. g > 0
G−measurable (G = σ(d1, ..., dn)),

E
[
g exp

(
λ

n∑
i=1

di

)]
≤

√√√√E
[
g2 exp

(
2λ

n∑
i=1

yi

)]
. (4)

When setting g = 1 almost surely, one gets the decoupling inequality for
the moment-generating function.
Remark: the yi ’s are conditionally independent given G.
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Self-Normalized statistics

A self-normalized statistic, literally,
takes the form An

Bn
(resp., At

Bt
for

continuous cases), where both An and
Bn are functions of X1, ..., Xn (resp.,
At , Bt the function of (Xs)0≤s≤t).
Self-normalization can be traced back
to the seminal work of W.S. GOSSET in
1908 ([8]), which is considered a
breakthrough in science. Notably, his
Student t-statistic allowed statistical
inference about the value of the mean
of a (Gaussian) distribution without
knowledge of the actual value of the
variance, provided one has a random
sample from the target population.

Figure: William S. Gosset, June
13, 1876 - October 16, 1937
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Joseph L. Doob, February 27, 1910 - June 7, 2004

Doob suggested the problem of self-normalization, in 1994.
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Canonical Assumptions

Assume that for a pair of random variables A, B with B > 0,

E exp(λA − λ2B2/2) ≤ 1, (5)

holds for any one of the following schemes:
for all real λ;
for all λ ≥ 0;
for all 0 ≤ λ < λ0, where 0 < λ0 < ∞.

This assumption is valid in a wide array of scenarios involving discrete-time
and continuous-time stochastic processes, particularly in the context of
(super)martingales.
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Example (Karatzas & Shreve [10])
Let Mt be a continuous, square-integrable martingale, with M0 = 0. Then
exp{λMt − λ2⟨M⟩t/2} is a supermartingale for all λ ∈ R.

Example (de la Peña [4])
Let {di} be a sequence of variables adapted to an increasing sequence of
σ−fields {Fi}. Assume that the di ’s are conditionally symmetric (i.e.,
L(di |Fi−1) = L(−di |Fi−1)). Then exp(λ

∑n
i=1 di − λ2∑n

i=1 d2
i /2), n ≥ 1,

is a supermartingale with mean ≤ 1, for all λ ∈ R.
Remark: There is no integrability assumption made in this example.
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Pseudo-maximization

Recall the canonical assumption for a pair of random variables A, B with
B > 0,

E exp(λA − λ2B2/2) ≤ 1,

If the ”global maximizer” of λA − λ2B2/2, λ̂ := A
B2 lies in the regime we

are interested, and is of course, deterministic, then E exp (A2/2B2) ≤ 1.
And by CHEBYSHEV inequality, we have

P
( |A|

|B|
> x

)
= P

(
A2

2B2 >
x2

2

)
≤ e− x2

2 Ee
A2

2B2 ≤ e− x2
2 .
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Unfortunately, since A
B2 is random, we need an alternative way,

pseudo-maximization, an informal framework of which can be stated as:
(i) For λ ∈ Λ, a measurable set, we construct a probability measure of λ,
with distribution function F independent of A and B.
(ii) Now by FUBINI, we have that

1 ≥ E exp
(

λA − λ2B2

2

)

= E
[∫

R
exp

(
λA − λ2B2

2

)
dF
]

=
∫
R
E
[
exp

(
λA − λ2B2

2

)]
dF .
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One application of pseudo-maximization is to construct a Gaussian bound
for A√

B2+E2B :

Theorem (de la Peña et al, [5])
Let A, B with B > 0 be random variables satisfying the canonical
assumption

E exp(λA − λ2B2/2) ≤ 1,

for all λ ∈ R. Then

P
( |A|√

B2 + E2B
≥ x

)
≤

√
2 exp

(
−x2

4

)
. (6)
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Law of Iterated Logarithm Bound

Let {Yn} be independent, identically distributed random variables with
means zero and variances σ2. Let Sn = Y1 + ... + Yn. Then

lim sup
n→∞

|Sn|√
2nσ2 log log n

= 1 a.s..
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Another application of pseudo-maximization, under the following
refinement of the canonical assumption, leads an LIL bound.

Theorem
Assume that

{exp
(

λAt − λ
B2

t
2

)
, t ≥ 0}

is a supermartingale with mean ≤ 1. Then on the set { lim
t→∞

B2
t = ∞},

lim sup
t→∞

At√
2B2

t log log B2
t

≤ 1.
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As formalized in the previous example:

Example (de la Peña [4])
Let {di} be a sequence of variables adapted to an increasing sequence of
σ−fields {Fi}. Assume that the di ’s are conditionally symmetric (i.e.,
L(di |Fi−1) = L(−di |Fi−1)). Then exp(λ

∑n
i=1 di − λ2∑n

i=1 d2
i /2), n ≥ 1,

is a supermartingale with mean ≤ 1, for all λ ∈ R.

We can get, on the set { lim
n→∞

n∑
i=1

d2
i = ∞}, that

lim sup
n→∞

n∑
i=1

di√
2(

n∑
i=1

d2
i ) log log(

n∑
i=1

d2
i )

≤ 1,

a sharp extension of KOLMOGOROV’s LIL without moment assumptions,
which is also valid for i.i.d. centered Cauchy variables.
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Background and Definitions

Given a stochastic process {Xn}n∈N0 , as the time n increases, so does our
knowledge about what has happened in the past, which can be modelled
using filtration.

Definition (Filtration (Discrete))
Given the measurable space (Ω, F), a sequence of σ-algebras F1, F2, ...,
on Ω such that

F1 ⊆ F2 ⊆ ... ⊆ F

is called a filtration.

Here Fn represents our knowledge at time n. It contains all events such
that at time n it is possible to decide whether A has occurred or not. As n
increases, there will be more such events A, i.e. the family Fn representing
our knowledge will become larger.
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Definition (Discrete-time Martingales)
Given the probability space (Ω, F ,P), a
sequence M1, M2, ..., of random variables is
called a martingale (resp, supermartingale,
submartingale) with respect to a filtration
F1, F2,..., if
1) Mn is integrable for each n = 1,2, ... ;
2) M1, M2, ... is adapted to F1, F2,...;
3) E(Mn+1|Fn) = (resp, ≤, ≥)Mn a.s. for
each n =1,2, ....

The concept of a martingale has its origin in
gambling, namely, it describes a fair game of
chance. Similarly, the notions of
submartingale and supermartingale defined
below are related to favourable and
unfavourable games of chance.
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Definition (Filtration)
Given the measurable space (Ω, F), a family of σ-algebras Ft on Ω,
parametrized by t ∈ T ⊂ R, is called a filtration if

Fs ⊆ Ft ⊆ F

for any s, t ∈ T such that s ≤ t.

Definition (Continuous-time Martingales)
Given the probability space (Ω, F ,P), a stochastic process ξt (t ∈ T ) is
called a martingale (resp, supermartingale, submartingale) with respect to
a filtration Ft , if
1) ξt is integrable for each t ∈ T ;
2) ξt is adapted to Ft for each t ∈ T ;
3) E(ξt |Fs) = (resp, ≤, ≥)ξs a.s. for every s, t ∈ T and s ≤ t.
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Examples

Example
Mean-corrected Sums of i.i.d. r.v.s & Simple Symmetric Random Walk
Let X1, X2, ... be independent random variables each with mean µ. Let
S0 = 0 and for n > 0 let Sn be the partial sum Sn = X1 + ... + Xn. Then
Mn = Sn − nµ is a martingale with respect to Fn, the information
contained in X1, ..., Xn.
If we now assume that Xi is the Rademacher variable, then this stochastic
process is called a simple symmetric random walk.
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Example
Brownian Motion The Wiener process (or Brownian motion) is a
stochastic process W (t) with values in R defined for t ∈ [0, ∞) such that
1) W (0) = 0 a.s.;
2) the sample paths t 7→ W (t) are a.s. continuous;
3) for any finite sequence of times 0 < t1 < ... < tn and Borel sets
A1, ..., An ⊂ R

P(W (t1) ∈ A1, ..., W (tn) ∈ An)

=
∫

A1
...

∫
An

p(t1, 0, x1)p(t2 − t1, x1, x2)...p(tn − tn−1, xn−1, xn)dx1...dxn,

where
p(t, x , y) = 1√

2πt
e

(x−y)2
2t

defined for any x , y ∈ R and t > 0, called the transition density.
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Some Basic Probabilistic Inequalities

Now let us get familiar with rudimentary probabilistic inequalities including
exponential inequalities, decoupling inequalities, and martingale
inequalities.
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MARKOV’s Inequality

For any integrable random variable X (i.e. EX < ∞), we have that, for
any a > 0,

P(|X |≥ a) ≤ E(|X |)
a . (7)
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HŐLDER’s inequality/ CAUCHY-SCHWARZ Inequality

For any square-integrable random variable X, Y (i.e. EX 2,EY 2 < ∞), we
have that

E|XY |≤
√
EX 2EY 2. (8)

And I leave the random vector’s version as an exercise.
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JENSEN’s Inequality

We assume X an integrable real-valued random variable and Φ a convex
function. Then

Φ(E(X )) ≤ E(Φ(X )). (9)
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BERNSTEIN’s inequality

Let {xi} be a sequence of independent variables. Assume that E(xi) = 0
and E(x2

i ) = σ2
i < ∞ and set v2

n =
∑n

i=1 σ2
i . Furthermore, assume that

there exists a constant 0 < c < ∞ such that, E(|xi |k) ≤ (k! /2)σ2
i ck−2 for

all k > 2 (satisfied by subexponential random variables). Then for all
x > 0.

P
( n∑

i=1
xi > x

)
≤ exp

(
− x2

2(v2
n + cx)

)
.
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HOEFFING’s Inequality for Sampling Without Replacement

Let the population C consist of N values c1, ..., cN (e.g. a deck of cards,
N=52), and let d1, ..., dn (n ≤ N) denote a random sample without
replacement drawn from C , and y1, ..., yn denote a random sample with
replacement from C . The random variables y1, ..., yn are i.i.d. and di

L= yi
for all i . And we have

E
[
Φ(

n∑
i=1

di)
]

≤ E
[
Φ(

n∑
i=1

yi)
]

. (10)
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DOOB’s Maximal Inequalities

If X1, X2, . . . , Xn are martingale differences (i.e., Mn :=
n∑

i=1
Xn is a

martingale with M0 = 0), then for any t > 0,

P
(

max
1≤k≤n

|Mk | ≥ t
)

≤ 1
t2E[(Mn)2]. (11)

And for all p > 1,

E
(

max
1≤k≤n

|Mk |p
)

≤
( p

p − 1

)p
E |Mn|p (12)
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We call it a day with the following important inequalities and one
definition, which we will give further discussion on this Wednesday.

Theorem (BURKHOLDER-DAVIS-GUNDY’s Square Function Inequality)
If X1, X2, . . . , Xn are martingale differences, then for any p ≥ 1,

cpE

( n∑
i=1

X 2
i

) p
2
 ≤ E

( max
1≤k≤n

∣∣∣∣∣
k∑

i=1
Xi

∣∣∣∣∣
)p ≤ CpE

( n∑
i=1

X 2
i

) p
2
 ,

(13)
where cp and Cp are positive constants depending only on p.
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KHINTCHINE inequality

Let ϵi , i = 1, ..., m be i.i.d. Rademacher variables with P(ϵi = ±1) = 1/2.
Let 0 < p < ∞ and let x1, ..., xn ∈ C. Then

Ap

( n∑
i=1

|xi |2
)1/2

≤
(
E|

n∑
i=1

ϵixi |p
)1/p

≤ Bp

( n∑
i=1

|xi |2
)1/2

(14)

for some constants Ap, Bp > 0 depending only on p.
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K-function

Definition (K-function, Klass [11])
Consider a nontrivial random variable Y . Then the K-function, KY (x), is
implicitly defined by the inverse of

g(x) = x2

x∫
0
E|Y |I|Y |>udu

. (15)

Exercise: Please verify the equivalent definition of K-function, which is
the unique solution of

KY (x)2 = xE[Y 2∧(|Y |KY (x))] = xEY 2I|Y |≤KY (x)+xKY (x)E|Y |I|Y |>KY (x).
(16)

You can find the proof in Section 1.4.3 of the book [7].

de la Peña Decoupling and Self-normalization AI4OPT Atlanta 2024 40 / 45



Theorem (K-function Bounds)
Consider {yi}n

i=1 a sequence of i.i.d. random centered variables such that
y1 ∼ Y . Then we have

0.67KY (n) ≤ E|
n∑

i=1
yi |≤ 2KY (n). (17)
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