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U-Statistics

Let Xi, ..., X, be a random sample (i.i.d. observations) from an unknown
distribution F in R. Given a known function h: R — R, consider the
estimation of the "parameter”

0 = 6(F) = E[h(Xy, ..., Xm)],

Of course, you may interested in more complex spaces, which the random
variables live in or h maps to, but now let us think about the simpler case.
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A natural unbiased estimator of 6 you propose is h(Xi, ..., Xpy), and since n
observations (with n > m) are available, this simple estimator can be
improved. Now you decide to get the average of h(X,,, .., Xa,,), Where
(Xays --s Xa,,) € T, the set of all permutations of m integers such that

1<oi<n, «aj#ajif i#j, (i,j=1,..m).

Congratulations! You successfully construct a U-Statistic, which in this
context is defined by

1
n(n—1)..(n—m+1) Z

(ch]_:-~~7Xam)€n

Up = U(Xq, ..., Xn) = h(Xays oo Xay)-

(1)
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If his permutation invariant ( for instance, when r = 3:

h((Xl,X27X3)) = h((Xz,X17X3)) = h((X3,X1,X2)) = h((X17X3,X1)) =
h((x2,x3,x1)) = h((x3,x2,x1)) ), the definition (1) is equivalent to

un:(i) S h(Xays o Xa) 2)

1<ai<...<am<n
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Although it may be the first time you hear U-Statistics, you have played
with it for a long time. Look at equation (2), then set h: R> — R be such
that h(x1, x2) = %(xl — x2)?, you can verify that U, is exactly twice the

sample variance, i.e.,

(Xi — Xn)? > (X - X)? > (Xi—X))?
1 _ 1<i<j<n _ 1<i<j<n

n—1 (5) - n(n—1)

And by doing so, it is convenient to show that s2 is an unbiasedness
estimator. This is why we call such estimators U-statistics: the letter "U"
stands for unbiased.

™=

2 i
n

S,
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There are several examples of U-statistics. The sample mean is definitely a
U-statistic. And when X; ~ X # 0 is nonnegative a.s., the sample Gini
mean difference (GMD), defined as

1 2
d=——"—)> |Xi— Xj|=—= ) |Xi— X,
n(nl); b n(nl)% b
is also a U-statistic. You can find several examples of U-statistics, together

with many brilliant limiting theorems, in the giant paper by W. HOEFFDING
(1948, [3]).
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Generalized U-statistics

We now extend this notion of U-statistics. Let {X;} be a sequence of
independent random variables in a measurable space (S,S) and

f = {fj, 1 <i# j < n}, afamily of functions of two variables taking
S x Sinto (D, ||-]|). Then we define the generalized U-statistic U, as

U= > fi(Xi.X) (3)

1<i#j<n

You can notice that the usual U-statistics can be obtained by letting
fi = f/(3). And such a generalized version may remind you more

examples. For instance, the quadratic form XTAX = Y 3;XX;,
1<iZj<n
where the diagonal elements of the symmetric matrix A are set to be zero.

de la Pefia Decoupling & U-statistics AI4OPT Atlanta 2024 10 /29



Random Graph

We can also link the generalized U-Statistic to random colored graph
theory. Let {X;}"_; a independent sequence of i.i.d. random variables, i.e.,

X; 2 X for some random variables X. Consider the complete graph
G = (V,E), where |V|= n and X; is the color of the vertex i. Now we let
fij = f for some f fixed, and if f is symmetric, then

So(f)= > f(X,X)

1<i#j<n

is a U-statistic (not averaged) representing some color information of
vertices.
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If we let X ~ Ber(p), where the vertex

Xi =1 (resp, 0) indicates that this vertex is
black (resp, white), and

f(x1,x2) = (1 — x1)x2, which is not
symmetric, then

Sif) =3 f(X.X)

1<i<j<n

counts patterns beginning with a white
vertex and ending with a black vertex in this
random sequence. And with

f(x1,x) = (s +£x), the statistic

Figure: A example of a random

1
Sy (f) = Z F(Xi, X)) ire’x’pi, L\lfvhere S, =2and
1<i<j<n " '

counts the edges with one black and one
white end-point.
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You may notice that, although X, ..., Xj, are mutually independent, the
random variables f;(X;, X;)'s are dependent, if i or j is fixed. This cause a
difficulty in evaluating the expectation of || > f(Xj, Xj)|| and

1<i<j<n

o <| > f(X,-,Xj)H> for some & : Ry — R convex increasing.

1<i<j<n
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Let us make the problem more complex, but give a formal statement: Let
X1, ..., X, be a sequence of independent random variables in a measurable
space (S,S) and let {f;} be a family of integrable functions such that
fi : S x S+ D with (D, ||-||) a Banach space. Let ® : R{ — R be convex
such that
Eo(]||f; (X, X; .

Lmax EO( (X, X)) < o0

Then how can we bound

Eo(| > (X, X)I)?
1<i#j<n
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Remember that in the last lecture, | briefly introduced tangent decoupling.
Think about the filtration F; = (X, ..., Xj), and you can write

n j—

1
= > HG(XX) =)D (X X)),
1<i<j<n j=2i=1

where Z f;(X:, X;) is adapted to Fj. Suppose that we have {X;}7_; an
|ndependent copy of {Xi}?_;. Then

n j—1 n
S X) =D Ti(X)

j=2i=1 j=2

is a sum of conditionally independent variables given o(Xi, ..., X,).
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Theorem (de la Pefia [1])

With the aforementioned setting ( : R — R convex increasing),

M:=E®(| > (X,X))
1<i#j<n

<E®(8] > (X X)).
1<i#j<n

And if f;; € Tj; satisfy the symmetry conditions
fij = fii and f;(Xi, X;) = £;(Xj, Xi),

then the reverse bound holds:

*H > X X)I) < M. (5)

1<i#j<n
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The fact that the lower bound does not hold for general f;; follows trivially
by using

fi(Xi, Xj) = Xj = Xi
because then 3=, ; f;j(Xi, X;) = 0. But one may still obtain a lower bound
by using the symmetrized kernels f; = [f;(X;, X;) + f;(Xj, Xi)]/2 for i # j
and letting f;; = f;;

Considering the situation of quadratic forms, XT AX, where the diagonal
entries of A are zero and A = AT, we have inequalities (4) and (5) as
follows when X;'s are mean-zero:

1 - -
E¢(Z|XTAX|) < EO(|XTAX|) < Ed(4|XTAX)).

I will explain the smaller constant 4 soon.
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We demonstrate only the first equation (4) here, with a trivial lemma. But

we first, for simplicity, denote by E, Y = E[Y|o], where Y is an r.v. and o
is a o-field.

Let us first see the following warm-up lemma:

For Xy, X5 i.i.d., we have E(X1|Z1) = # where Z; = (X1, X2) w.p.
1/2 and Zl = (Xg,Xl) w.p. 1/2.
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We extend this result to the bi-variate case in the following lemma:

Let  =o(Z,i=1,...,n), where {Z}is a sequence of independent
random vectors with Z; = (X;, X;) w.p. % and Z; = (X;, Xj) w.p. % Then,

Ef3(Xi, Xj) = B f(Xi, X;) = E2f3(Xi, X;) = Eaf5(X;, X))
1 . . Y
= ;Ez [£(X5, ) + 50, %) + £(%5, ) + (%, ;)]

1 - - o &
= 2 [ X0) + 650X, X5) + 5%, X)) + 155, %)]

(6)

It is not hard to verify this lemma, by applying the same conditional law of
fii(Xi, Xj) and £;;(X;, X;) given 2, and noticing that the sum of those four
terms is measurable w.r.t. Z.
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Setting 2" = o(Xi, ..., Xn), we use the following identity (remember we
denote by E, Y = E[Y]0]):

S XL X) = DD [Eafi(Xi, X)) + Ea (X, X))
1<i#j<n 1<i#j<n
+Eo (X, X;) + Eyﬁ-j(ki, X))

- Z [Elfu( )“‘]Exfu(XuX)
1<i#j<n

+Ea fi(Xi, X))].
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A Simpler Version

Recall the Lemma 6, that
1 - - N

We assume that E - f(X;, X;) = Eo-f(Xi, X;) = Eo f(Xi, X;) =0 (e.g.,
f(x1,x2) = axixy for some constant a).

For the U-statistic 3>  f(Xj, Xj) with symmetric kernel f, we have
1<iZj<n

Eo(]Y F(Xi, X)) = ES(> F(X:, X;) + Ear[F(Xi, X)) + £(Xi, X)) + F(X:, X)]))
SEO(D - (F(X0, X)) + (X0, X)) + (X5, X)) + F(X:, X)) 1)
=EO(|) 4E» (X, X))
<E(4) (X, X))
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From the preceding and the triangle inequality,

ES(| D> (X X))

1<i#j<n
<SES(| D Eaf(X, X)) + (X, X)) + f(X, X)) + (%, X)]|

1<iZj<n
+ B [F(X5, X7) + (X5, X) + (X5, X))
1 . 3 L
< SE®(2| > Ea[f(X, X)) + (X, X5) + (5, X)) + f(X:, )11

1<iAj<n
1 . . ..
+SE(2] D Ea[f(X, X)) + (5, %) + (5%, X))
1<iZi<n

[by the convexity of @]
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1 o ~ o o
< SEQQI Y (X X) + (X0 X)) + (%5, X) + (% X))
1<i#j<n

1 ~ ~ ~ o~
+ §]E¢(2H Z E g [f;(Xi, X;) + f;(Xi, Xj) + f;(Xi, Xj)||) [conditional Jensen inequality]
1<iA<n

1 © 1 o
< JEO@B| Y Exfi(X X))+ S[ES6] D Eofi(Xi X))
1<ij<n 1<ij<n
+HEOO] > Ear (55, X)) FES6] Y Ear (X K)oy (6) and @ convex]

1<i#j<n 1<i#j<n

<2mol Y LK + RG] Y 06 X))

1<izj<n 1<izj<n

N =

1 o o .
+ SEO(6] Z Ef;(X:, X)) [by conditional JEnsEN, and Ef;(X;, X;) = Ef;(X;, X;)]

1<i#j<n
1 9 1 5 . .
< JEO@E| Y X))+ SEOEI Y XK by Jensen inequalivy
1<i#j<n 1<i#j<n
< Ed(8|| Z ﬁJ(X,,)’%J)||) [by @ increasing]
1<i#<n
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Decoupling Inequalities for General Kernels h

While this lecture primarily emphasizes the (generalized) U-statistics cases
with kernels of the form h: S — D, it's worth noting that we have also
established decoupling inequalities for the more general h: S — D
Consequently, we arrive at a frequently employed concentration inequality
(See de la Pefia and Montgomery-Smith [4] in the Bulletin of the
American Mathematical Society, or [2]).
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Let Xy, ..., X, be a sequence of independent random variables on a
measurable space (S,S) and let {X(J },j=1,..., k be k independent
copies of {X;}. Let f; . ; be family of functions of k variables taking Sk
into a Banach space (D, ||-||). Assume that each f; _; is permutation
invariant. Then for all n > k > 2, t > 0, there exist numerical constants
Cr, Ci depending on k only such that (with P,k the set of all
permutations (i, ..., ik) € {1, ..., n}¥)

P || Z fil,...,ik(Xfl? --'>Xi/<)|| >t

(fl,...,ik)EP,,’k

<ar(Gl Y A x>

1 b
(i17i2:-~~7ik)epn,k
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In addition,

&kP (&kH Z Filynwik(Xil? '--7Xik)H > t)

(715025051 ) E Pk

k
2P (H Z Fir ik Xi(11)7 ---7X,'$( ))H > t) .

(I'l,iz,...,ik)EP,,’k
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