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Self-normalized statistic, literally, takes the form An
Bn

(resp., At
Bt

for
continuous cases), where both An and Bn are functions of your
observations X1, ..., Xn (resp., At , Bt the function of (Xs)0≤s≤t). One of
the bonuses of self-normalization is that you can obtain a statistic, which,
with sample size n increasing, maintains a bounded tail probability. Some
self-normalized statistics you may encounter are, for example, sample Gini
coefficient Ĝ = 1

2

1
n(n−1)

∑
1≤i,j≤n|Xi −Xj |
X̄n

of positively supported random

variables and sample squared coefficient of variation ĉV
2 := s2

n
X̄2

n
, which

cancels the scaling.

de la Peña Self-normalization I AI4OPT Atlanta 2024 4 / 25



A celebrated self-normalized statistic you learned in your undergraduate
time is Student’s t-statistic, by W. GOSSET. Recall that you have {Xi} i.i.d
normal N (µ, σ2), and the sample mean and sample variance, respectively
defined by

X̄n =
∑n

i=1 Xi
n s2

n =
∑n

i=1(Xi − X̄n)2

n − 1 ,

then the t-statistic is constructed: Tn = X̄n−µ
sn/

√
n ∼ tn−1, the t-distribution

with degree of freedom n-1. In addition, if you denote by
Yi = Xi − µ, An =

∑n
i=1 Yi , B2

n =
∑n

i=1 Y 2
i , then you will find that,

Tn =
An
Bn√

(n − (An/Bn)2)/(n − 1)
,

a function of the self-normalized statistic An
Bn

.
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Notably, W. GOSSET’s ”Student” t-statistic
allowed statistical inference about the value
of the mean of a (Gaussian) distribution
without knowledge of the actual value of the
variance, provided one has a random sample
from the target population.

Several years later, B. EFRON, the founder of
the bootstrap, developed a self-normalized
inequality for independent symmetric
variables. And after EFRON, there were some
more developments in self-normalization for
independent variables, and, for martingales
or dependent variables.

Figure: William S. Gosset, June
13, 1876 - October 16, 1937
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BERNSTEIN’s inequality

The first time I studied Self-normalization was when I tried to generalize
BERNSTEIN’s inequality for self-normalized martingales. Let us first recall
this inequality:

Theorem (BERNSTEIN’s inequality)
Let {xi} be a sequence of independent variables. Assume that E(xi) = 0
and E(x2

i ) = σ2
i < ∞ and set v2

n =
∑n

i=1 σ2
i . Furthermore, assume that

there exists a constant 0 < c < ∞ such that, almost surely,
E(|xi |k) ≤ (k! /2)σ2

i ck−2 for all k > 2 (satisfied by subexponential random
variables). Then for all x > 0.

P
( n∑

i=1
xi > x

)
≤ exp

(
− x2

2(v2
n + cx)

)
.
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Bernstein’s inequality for self-normalized martingales

Theorem (de la Peña, [2])
Let {di} be a martingale difference sequence w.r.t. filtration {Fi}.
Assume that E(dj |Fj−1) = 0 and E(d2

j |Fj−1) = σ2
j < ∞ and set

V 2
n =

∑n
j=1 σ2

j . Furthermore, assume that there exists a constant
0 < c < ∞ such that, almost surely, E(|dj |k

∣∣∣Fj−1) ≤ (k! /2)σ2
j ck−2 for all

k > 2. Then for all x , y > 0.

P


n∑

i=1
di

V 2
n

> x ,
1

V 2
n

≤ y

 ≤ exp
(

− x2

2(y + cx)

)
.
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The inequality is a sharp extension for Bernstein’s inequality, since when
V 2

n = v2
n (nonrandom) the two inequalities are equivalent. The key steps

in obtaining this result involve the use of Markov’s inequality followed by
the decoupling inequality in Lecture 4 (see de la Peña [1] and [2])

E
[
g exp(λ

n∑
i=1

di)
]

≤

√√√√E
[
g2 exp

(
2λ

n∑
i=1

yi

)]
.

We then (conditionally) apply the standard results for sums of independent
random variables to complete the proof. The entire proof is too long to
present here, and you may find it in [2].
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Auto-Regressive Processes

An example of self-normalized processes in dependent variables arose in
the context of Maximum Likelihood Estimators (MLEs) for the parameter
in auto-regressive (AR) processes. I will use this example to summon the
canonical assumption, which will be a pivotal topic in the next two days.
Let us consider the following Auto-Regressive Gaussian process (Yi)∞

0 ,
such that

Yi = αYi−1 + ϵi , Y0 = 0, (1)

where α ̸= 0 is a fixed, unknown parameter and ϵi are independent
standard normal random variables N (0, 1).
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To obtain the MLE of α, we establish our log-likelihood function

l(α; Y1, ..., Yn) = logα f (Y1, ..., Yn)

=
n∑

j=1
(Yj − αYj−1)2/2 − n log(

√
2π).

Taking the derivative w.r.t. α, equating to zero and solving for α, we
obtain the MLE for α,

α̂ =
∑n

j=1 Yj−1Yj∑n
j=1 Y 2

j−1
=
∑n

j=1 Yj−1(αYj−1 + ϵj)∑n
j=1 Y 2

j−1
= α +

∑n
j=1 Yj−1ϵj∑n
j=1 Y 2

j−1
. (2)

You now find, without much surprise, that this MLE is a
self-normalization, and so is α̂ − α:

α̂ − α =
∑n

j=1 Yj−1ϵj∑n
j=1 Y 2

j−1
. (3)
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We now construct the filtration F := σ(Y1, ..., Yn; ϵ1, ...ϵn), and therefore
the numerator

∑n
j=1 Yj−1ϵj =: An is a martingale w.r.t. F . And the

denominator n∑
j=1

Y 2
j−1 =

n∑
j=1

E[Y 2
j−1ϵ2

j |Fj−1] =: B2
n (4)

is the conditional variance of An. Thus α̂ − α = An
B2

n
is a process

self-normalized by the conditional variance. Since ϵi ’s are N (0, 1), then we
have that for any λ ∈ R,

Mn := exp
(

λAn − λ2B2
n

2

)
(5)

is an exponential martingale w.r.t. Fn (I leave this claim as an exercise left
for you to verify). With optimal stopping theorem, you have that
E(Mn) = E(M1) = 1, for all n ≥ 1, which leads to

Eexp
(

λAn − λ2B2
n

2

)
≤ 1 (6)

the canonical assumption in the next section.
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Canonical Assumption

So far, we have found an inequality (6). And such inequality, for a pair of
random variables A, B with B > 0, taking the general form

E exp(λA − λ2B2/2) ≤ 1, (7)

frequently appears in probability theory and stochastic analysis. There are
three regimes of interest: (7) holds

for all real λ;
for all λ ≥ 0;
for all 0 ≤ λ < λ0, where 0 < λ < ∞.
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Gaussian Bounds

In this lecture, we only focus on the first case, i.e.,

E exp(λA − λ2B2/2) ≤ 1,

holds for all real λ. One theorem that bounds the tail probability of A/B2,
with a constraint for B2 is given below.

Theorem (de la Peña, Klass and Lai [3])
Under the canonical assumption for all real λ,

P
( A

B2 > x ,
1

B2 ≤ y
)

≤ exp
(

− x2

2y

)
(8)

for all x , y > 0.
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Proof

The key here is to ”keep” the indicator when using MARKOV Inequality.
In fact, for all measurable set S,

P( A
B2 > x , S) = P(exp(A) > exp(xB2), S)

≤ inf
λ>0

E
[
exp(λ

2 A − λ

2 xB2)I{A/B2>x ,S}

]
= inf

λ>0
E
[
exp(λ

2 A − λ2

4 B2 − (λ

2 x − λ2

4 )B2)I{A/B2>x ,S}

]

≤ inf
λ>0

√
E
[
exp(λA − λ2

2 B2
] √

E
[
−(λx − λ2

2 )B2)I{A/B2>x ,S}

]
by the CAUCHY-SCHWARZ inequality.

de la Peña Self-normalization I AI4OPT Atlanta 2024 18 / 25



Proof Cont’d

So far, we have

P( A
B2 > x , S) ≤

inf
λ>0

√
E
[
exp(λA − λ2

2 B2)
] √

E
[
−(λx − λ2

2 B2)I{A/B2>x ,S}

]
The first term in the last inequality is bounded by 1, by the canonical
assumption. The value minimizing the second term is λ = x , and therefore

P(A/B2 > x , S) ≤

√
E
[−x2B2

2

]
I{A/B2>x ,S}.

Let us set S = { 1
B2 < y} and our theorem follows as we claimed.
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Now let us go back to our AR model and recall

α̂ − α =
∑n

j=1 Yj−1ϵj∑n
j=1 Y 2

j−1
.

We apply this bound with y = 1
z to (3), and yield that

P

|α̂ − α|> x ,
n∑

j=1
Y 2

j−1 ≥ z

 ≤ 2 exp(−x2z
2 ).
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Examples of Self-Normalized Statistic

Here I list some self-normalized statistics A
B that satisfy (7) for some λ.

Lemma
Let Wt be a standard Brownian motion. Assume that T is a stopping time
such that T < ∞ a.s.. Then for all λ ∈ R,

E exp(λWT − λ2T/2) ≤ 1.
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Lemma
Let Mt be a continuous, square-integrable martingale, with M0 = 0. Then
exp{λMt − λ2⟨M⟩t/2} is a supermartingale for all λ ∈ R, and therefore

E exp(λMt − λ2⟨M⟩t/2) ≤ 1.
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Lemma (de la Peña [2])
Let {di} be a sequence of variables adapted to an increasing sequence of
σ−fields {Fi}. Assume that the di ’s are conditionally symmetric (i.e.,
L(di |Fi−1) = L(−di |Fi−1)). Then exp(λ

∑n
i=1 di − λ2∑n

i=1 d2
i /2), n ≥ 1,

is a supermartingale with mean ≤ 1, for all λ ∈ R.

Remark: There is no integrability assumption made in this example.
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Lemma
Let {dn} be a sequence of random variables adapted to an increasing
sequence of σ−fields {Fn} such that E(dn|Fn−1) ≤ 0 and .̇n ≤ M a.s. for
all n and some random positive constant M. Let 0 < λ0 ≤ M−1, An =∑n

i=1 di , B2
n = (1 + 1

2λ0M)
∑n

i=1 E(d2
i |Fi−1), A0 = B0 = 0. then

{exp(λAn − 1
2B2

n), Fn, n ≥ 0} is a supermartingale for every 0 ≤ λ ≤ λ0.
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