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Canonical Assumption

Let us carefully recall the canonical assumption in the last class. We
assume that, for a pair of random variables A, B with B > 0,

E exp(λA − λ2B2/2) ≤ 1, (1)

holds
for all real λ;
for all λ ≥ 0;
for all 0 ≤ λ < λ0, where 0 < λ < ∞.
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If the global maximizer λ̂ := A
B2 lies in the regime we are interested, and is

of course, deterministic, then by CHEBYSHEV inequality, we have

P
( |A|

|B|
> x

)
= P

(
A2

2B2 >
x2

2

)
≤ e− x2

2 Ee
A2

2B2 ≤ e− x2
2 .

a beautiful Gaussian bound.
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Framework of Pseudo-maximization

Unfortunately, since A
B2 is random, we need an alternative method for

dealing with this maximization. And today, I introduce one celebrated
approach: pseudo-maximization. An informal framework of this method
can be stated as follows:
(i)For λ ∈ Λ a measurable set, we construct a finite (probability) measure
of λ, with distribution function F independent of A and B.
(ii) Now we have that

E
[
exp

(
λA − λ2B2

2

)]
= 1

F (+∞)

∫
R
E
[
exp

(
λA − λ2B2

2

)]
dF

= 1
F (+∞)E

[∫
R

exp
(

λA − λ2B2

2

)
dF
]

by FUBINI. And we note that F (+∞) = 1 when we assume a probability
measure F for λ.
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To be effective for all possible pairs, the F chosen would need to be as
uniform as possible so as to include the maximum value of
exp(λA − λ2B2/2). And for (1) that holds for all real λ or λ ≥ 0, since all
finite measures vanish at infinity, we need to construct a measure decaying
as slowly as we can manage.

de la Peña Pseudo-maximization AI4OPT Atlanta 2024 7 / 39



Topics Preview

1 Background on Pseudo-maximization (Method of Mixtures)

2 Gaussian Bounds for A√
B2+E2B

3 Matrix-Normalized Processes

4 Gaussian Bounds for A√
(B2+(E|A|p)2/p)

5 Boundary-crossing Problem

de la Peña Pseudo-maximization AI4OPT Atlanta 2024 8 / 39



One application of pseudo-maximization is to construct a Gaussian bound
for A√

B2+E2B , with the theorem stated below.

Theorem (de la Peña, Klass & Lai [4])

Let A, B with B > 0 be random variables satisfying the canonical
assumption (7) for all λ ∈ R. Then

P
( |A|√

B2 + E2B
≥ x

)
≤

√
2 exp

(
−x2

4

)
. (2)
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The following lemma, established through pseudo-maximization, plays a
pivotal role in proving Theorem 1.

Lemma

Under the canonical assumption (1) for all λ ∈ R, for every y > 0, we have

E
[

y√
B2 + y2 exp

(
A2

2(B2 + y2)

)]
≤ 1 (3)
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Considering that λ ∈ R, we here let λ ∼ N (0, 1
y2 ). Multiplying both sides

of (1) by (2π−1/2)y exp(−λ2y2/2) and integrating over λ, we obtain that

1 ≥
∫
R
E

y√
2π

exp
(

λA − λ2

2 B2
)

exp
(

−λ2y2

2

)
dλ

= E[ y√
B2 + y2 exp

(
A2

2(B2 + y2)

)
∫
R

√
B2 + y2
√

2π
exp{−B2 + y2

2

(
λ2 − 2 A

B2 + y2 + A2

(B2 + y2)2

)
}dλ]

(4)

= E
[

y√
B2 + y2 exp

(
A2

2(B2 + y2)

)]
,

where in step (4) we fix A, B inside E(·) and change the measure to
λ ∼ N ( A

B2+y2 , 1
B2+y2 ).
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Now we have prepared to prove the theorem, with the inequality in the
lemma above:

E
[

y√
B2 + y2 exp

(
A2

2(B2 + y2)

)]
≤ 1 (5)

By CAUCHY-SCHWARZ inequality and the inequality above, we have that

E exp( A2

4(B2 + y2)) ≤

√√√√E
y exp( A2

2(B2+y2))√
B2 + y2 E

√
B2 + y2

y2

≤

√√√√E

√
B2 + y2

y2 .
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Recall that B is nonnegative a.s., and we have that E
√

B2+y2

y2 ≤ E(B
y + 1),

which means that we can set y = EB so that

E exp( A2

4(B2 + y2)) ≤

√√√√E

√
B2 + y2

y2 ≤
√

2.

Finally, combining MARKOV’s inequality, we have that

P
( |A|√

B2 + E2B
≥ x

)
= P

(
A2

4(B2 + E2B) ≥ x2

4

)
≤

√
2 exp

(
−x2

4

)
.
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We then extend the canonical assumption to the setting of a random
vector A and the canonical assumption on a random vector A and a
symmetric, positive definite random matrix C:

E exp
(

θT A − 1
2θT Cθ

)
, ∀θ ∈ Rd . (6)

The following two lemmas below are the extensions of the corresponding
results in Lecture 6. More examples can be seen in Section 14.1.2 of the
book by LAI, SHAO, and me [5].
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Examples

Lemma
Let Mt be a continuous, square-integrable martingale taking values in Rd ,
with M0 = 0. Then exp{θT Mt − θT ⟨M⟩tθ/2} is a supermartingale for all
θ ∈ Rd , and therefore

E exp{θT Mt − θT ⟨M⟩tθ/2} ≤ 1.

Lemma
Let {di} ⊆ Rd be a sequence of variables adapted to an increasing
sequence of σ−fields {Fi}. Assume that the di ’s are conditionally
symmetric (i.e., L(di |Fi−1) = L(−di |Fi−1)). Then
exp(θT (

∑n
i=1 di) − θT (

∑n
i=1 d2

i )θ/2), n ≥ 1, is a supermartingale with
mean ≤ 1, for all θ ∈ Rd .
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Recall this aforementioned lemma, which is the one-dimensional version.

Lemma

Under the canonical assumption for a pair of random variables A, B with
B > 0,

E exp(λA − λ2B2/2) ≤ 1, (7)

for all λ ∈ R, for every y > 0, we have

E
[

y√
B2 + y2 exp

(
A2

2(B2 + y2)

)]
≤ 1 (8)
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We next prove the following lemma, which is the multi-variate version of
Lemma before.

Lemma (de la Peña, Klass & Lai [9])

Let a random vector A and a symmetric, positive definite random matrix C
satisfy the following canonical assumption

E exp
(

θT A − 1
2θT Cθ

)
≤ 1, ∀θ ∈ Rd . (9)

Let V be a positive definite nonrandom matrix, then

E
[√

det(V )
det(C + V ) exp

(1
2AT (C + V )−1A

)]
≤ 1, (10)

E exp
(1

4AT (C + V )−1A
)

≤
√
E
√

det(I + V −1C). (11)
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We set θ ∼ N (0, V −1), i.e., the density function of θ is

f (θ) = (2π)−d/2√
det V exp(−θT V θ/2), θ ∈ Rd .

After multiplying both sides of (9) by f (θ) and integrating over θ. By
FUBINI’s theorem,

1 ≥ E

√
det V

(2π)− d
2

eAT (C+V )−1A/2
∫
Rd

e−[θ−(C+V )−1A]T (C+V )[θ−(C+V )−1A]dθ


= E

√
det(V )

det(C + V )eAT (C+V )−1A/2,

proving the first inequality (10).
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To prove the second inequality (11), apply the first inequality (10) to the
upper bound in the CAUCHY–SCHWARZ inequality

E exp
(1

4AT (C + V )−1A
)

≤
[
E
√

det(V )
det(C + V )eAT (C+V )−1A/2

] 1
2
[
E
√

det(C + V )
det(V )

] 1
2

.

We will discuss the application of this lemma (high-dimensional version)
on the construction of confidence intervals later.
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De la Peña and Pang then provided the Gaussian bound for the tail
probability of a similar self-normalized statistic A√

(B2+(E|A|p)2/p)
, where

p ≥ 1 can be any number such that A ∈ Lp.

Theorem (de la Peña & Pang, [2])

Under the canonical assumption for all real λ, suppose E|A|p< ∞ for some
p ≥ 1. Then for any x > 0 and q ≥ 1 such that 1/p + 1/q = 1,

P( |A|√
2q−1

q (B2 + (E|A|p)2/p)
≥ x) ≤ ( q

2q − 1)
q

2q−1 x
−q

2q−1 exp{−x2/2}, x > 0

(12)

Remark
If we assume A is integrable, or square-integrable, the bound in the RHS
of (12) becomes 2

3
2/3x−2/3 exp(−x2/2) or 2−1/2x−1/2 exp(−x2/2).
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We establish the following identity: for any C > 0,

E
[

C√
B2 + C

exp
(

A2

2(B2 + C)

)]
≤ 1,

which is exactly the lemma of the one-dimensional version (where
C = y2 > 0). You are suggested to recall how to obtain this inequality
with Gaussian mixture. Now let G ∈ F be any measurable set. Then, by
MARKOV’s inequality,

P
( |A|√

B2 + C
≥ x , G

)
= P

(
|A|2

4(B2 + C) ≥ x2

4 , G
)

≤ P
(

|A|1/2

(B2 + C)1/4 exp
(

|A|2

4(B2 + C)

)
≥ x1/2 exp(x2/4), G

)

≤ x−1/2 exp(−x2/4)E

( |A|2

(B2 + C)

)1/4

exp
(

|A|2

4(B2 + C)

)
IG

 .
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Now, by HÖLDER’s inequality,

E

( |A|2

(B2 + C)

)1/4

exp
(

|A|2

4(B2 + C)

)
IG


= E

( C1/4

|A|1/2
|A|2

(B2 + C)

)1/4

exp
(

|A|2

4(B2 + C)

)
|A|1/2

C1/4 IG


≤
(
E
( C

B2 + C

)1/2
exp

(
|A|2

2(B2 + C)

))1/2(
E
[

|A|1/2

C1/2 IG

])1/2

≤
(
E
[ |A|

C1/2 IG
])1/2

.
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If A ∈ Lp for p > 1, we can choose C = (E|A|p)2/p so that for p, q
satisfying 1/p + 1/q = 1, again by HÖLDER’s inequality,

E
[ |A|

C1/2 IG
]

≤
(
E
[ |A|p

Cp/2 IG
])1/p

P(G)1/q ≤ P(G)1/q.

This implies that

P

 |A|√
B2 + (E|A|p)2/p

≥ x , G

 ≤ x1/2 exp(−x2

4 )P(G)1/2q.

Now letting G = { |A|√
B2+(E|A|p)2/p

≥ x}, we obtain

P

 |A|√
B2 + (E|A|p)2/p

≥ x

 ≤ x− q
2q−1 exp

( −q
2(2q − 1)x2

)
,

as we claimed.
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Martingale Inequality

Now let us focus on the case of martingale. BERCU and TOUATI [1],
provides the following lemma, which satisfies the canonical assumption.

Lemma

Let {Xi : i ≥ 1} be a martingale difference sequence w.r.t. the filtration
F = {Fn : n ≥ 1} and suppose that EX 2

i < ∞ for all i ≥ 1. Then, for all
λ ∈ R,

E
[
exp

( n∑
i=1

Xi − λ2

2 (
n∑

i=1
X 2

i +
n∑

i=1
E[X 2

i |Fi−1])
)]

≤ 1. (13)
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This lemma and the above theorem lead to the following concentration
inequality.

Theorem (de la Peña & Pang, [2])

With the same setting in Lemma 9, let τ be any stopping time with
respect to the filtration F and assume τ < ∞ a.s.. then equation (13)
holds even when n is replaced by τ , and for x > 0,

P

 |
∑τ

i=1 Xi |√
3
2
(∑τ

i=1 X 2
i +

∑τ
i=1 E[X 2

i |Fi−1] + E[
∑τ

i=1 X 2
i ]
) ≥ x


≤
(2

3

) 2
3

x− 2
3 e− x2

2 .

Fan et al. [7] applied those theorems by de la Peña and Pang to construct
self-normalized Cramér type moderate deviations for self-normalized
martingales.
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In the next section, we will use the method of mixtures to do an analysis
of the boundary-crossing problems. This method was first introduced by
ROBBINS and SIEGMUND [10] and later refined by LAI [8], at Columbia.

de la Peña Pseudo-maximization AI4OPT Atlanta 2024 29 / 39



Theorem (Law of the Iterated Logarithm)
Let Yn be independent, identically distributed random variables with
means zero and variances σ2. Let Sn = Y1 + ... + Yn. Then

lim sup
n→∞

|Sn|√
2nσ2loglogn

= 1 a.s.. (14)
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Figure: Law of the Iterated Logarithm: Simple Symmetric Random Walk,
obtained from Wikipedia
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Canonical Assumption

We plan to extend this limiting theorem to self-normalization At
Bt

and we
make the following refinement of the canonical assumption:

{exp(λAt − λ2B2
t /2), t ≥ 0} is a supermartingale with mean ≤ 1, (15)

for 0 ≤ λ < λ0, with A0 = 0.
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Instead of constructing a probability measure, we let F be a finite positive
measure on (0, λ0) and assume that F (0, λ0) > 0. Without assuming the
exact density (or mass) of F , let us first consider the following function
Ψ : R × R+ → R+, such that

Ψ(u, v) =
∫

(0,λ0)

exp
(

λu − λ2v
2

)
dF (λ).

When v > 0 is fixed, Ψ(·, v), strictly increasing, map onto R+, and this
implies that when we further fix c > 0, the equation

Ψ(u, v) = c
has a unique solution u = βF (v , c).
Moreover, you can verify that βF (v , c) is a concave function of v and

lim
v→∞

βF (v , c)
v = b

2 ,

where
b := sup{y > 0 :

∫ y

0
F (dλ) = 0},

with sup over the empty set equal to zero.
de la Peña Pseudo-maximization AI4OPT Atlanta 2024 33 / 39



The ROBBINS-SIEGMUND (R-S) boundaries βF (v , c) can be extended to
analyse the random boundary crossing probability

P(At ≥ g(Bt) for some t ≥ 0),

when g(Bt) = βF (B2
t , c) for some F and c > 0. This probability equals

P(At ≥ g(Bt) for some t ≥ 0) = P(Ψ(At , B2
t ) ≥ c for some t ≥ 0)

= lim
T↑∞

P(sup
t≤T

∫
(0,λ0)

eλAt− λ2B2
t

2 dF (λ) ≥ c)

≤ lim
T↑∞

1
cE[

∫
(0,λ0)

eλAT −
λ2B2

T
2 dF (λ)] [by DOOB’s Inequality]

= lim
T↑∞

1
c

∫
(0,λ0)

E
[
eλAT −

λ2B2
T

2

]
dF (λ) [using pseudo-maximization]

≤ 1
c

∫
(0,λ0)

dF (λ) = F ((0, λ0))
c .
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Let us denote by log2(·) = log log(·) and log3(·) = log log log(·). For
δ > 0, λ ∈ (0, e−e) we assume F ≪ Lebesgue, such that

dF (λ) = 1
λ(log 1

λ(log2
1
λ)1+δ)

dλ

As shown in example 4 of ROBBINS and SIEGMUND [10], for fixed c,

βF (v , c) =
√

2v [log2 v + (3
2 + δ) log3 v + log( c

2
√

π
) + o(1)],

as v → ∞. With this choice of F , the probability
P(At ≥ g(Bt) for some t ≥ 0) is bounded by F (0, e−e)/c for all c > 0.
Given ϵ > 0, take c large enough so that F (0, e−e)/c < ϵ. Since ϵ can be
arbitrarily small and since for fixed c, βF (v , c) ∼

√
2v log log v as v → ∞,

lim sup At
2B2

t log log B2
t

≤ 1,

on the event set { lim
t→∞

Bt = ∞}.
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Theorem (de la Peña, Klass & Lai, [6])
Assume that

{exp
(

λAt − λ
B2

t
2

)
, t ≥ 0}

is a supermartingale with mean ≤ 1. Then on the set { lim
t→∞

B2
t = ∞},

lim sup
t→∞

At√
2B2

t log log B2
t

≤ 1.
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Let us recall the following example introduced on Monday, where we made
no integrability assumption.

Lemma (de la Peña [3])
Let {di} be a sequence of variables adapted to an increasing sequence of
σ−fields {Fi}. Assume that the di ’s are conditionally symmetric (i.e.,
L(di |Fi−1) = L(−di |Fi−1)). Then exp(λ

∑n
i=1 di − λ2∑n

i=1 d2
i /2), n ≥ 1,

is a supermartingale with mean ≤ 1, for all λ ∈ R.

We can have, on the set { lim
n→∞

n∑
i=1

d2
i = ∞}, that

lim sup
n→∞

n∑
i=1

di√
2(

n∑
i=1

d2
i ) log log(

n∑
i=1

d2
i )

≤ 1,

a sharp extension of KOLMOGOROV’s LIL without moment assumptions,
which is also valid for i.i.d. centered Cauchy variables.
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