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Outline of this lecture series

|, Today: game-theoretic testing
2. Tomorrow morning: game-theoretic estimation

3. Tomorrow afternoon: game-theoretic change detection



Outline of this talk

| "Sequential, anytime-valid inference (SAVI)”

2. lesting by betting yields SAVI inference (simple example)

3. Core SAVI concepts

4. Optimal gambling strategies (second half of the talk, most interesting!)



An Infamous Instance of “‘peeking at p-values™ is the
power-posing controversy (Amy Cuddy, Dana Carney).

C' @ faculty.haas.berkeley.edu/dana_carney/pdf_My%20position%200n%20power%20poses.pdf @ ® ;AW ® :
E=5 Courses £ Wshops EFUCB EZSports [1 Vovk [1 Group Ex ESITRL ) Jonathan Pon Mem... [ Classes [ Charities E= Podcasts [# Causallinf » [ Other Bookmarks

4. The data are flimsy. The effects are small and barely there in many cases.

5. Initially, the primary DV of interest was risk-taking. We ran subjects in chunks and checked the effect along the
way. It was something like 25 subjects run, then 10, then 7, then 5. Back then this did not seem like p-hacking. It
seemed like saving money (assuming your effect size was big enough and p-value was the only issue).

6. Some subjects were excluded on bases such as “didn’t follow directions.” The total number of exclusions was 5.
The final sample size was N = 42.

7. The cortisol and testosterone data (in saliva at that point) were sent to Salimetrics (which was in State College,

PA at that time). The hormone results came back and data were analyzed.
8. For the risk-taking DV: One p-value for a Pearson chi square was .052 and for the Likelihood ratio it was .05. The

smaller of the two was reported despite the Pearson being the more ubiquitously used test of significance for a

“Sampling to a foregone conclusion” — Anscombe (1950s)



What is the problem with continuous monitoring?

Collect data Check if
(Increase sample size)

“optional continuation”

With commonly-taught p-values,

false positive rate > « . “optional stopping”



Let P be a classical p-value (eg: t-test),

calculated using the first n samples.

Under the null hypothesis (no treatment effect),

Vn > 1, Pr(P" < a) <a.

proB. of false poéitive

Let 7 be the stopping time of the experiment.

Often, r depends on data, eg: 7 := min{n € N : P™ < o} .

Unfortunately, Pr(P"” < a) £ «a.
usually = 1.

Not special to p-values. Same holds for confidence intervals.



Same issue with confidence intervals

. Collect data . Check if
(Increase sample size)

“optional continuation”

Again, false positive rate > .  ©ptional stopping’



Let (LY, U™) be any classical (1 — a) Cl,

calculated using the first n samples.

When trying to estimate the treatment effect 6,

Vvn>1, Pr(@e (L, UY))>1-a.
\prob. of vcoveragel

Let 7 be the stopping time of the experiment.

Again, T may depend on data, eg: 7 := min{n € N : L™ > 0} .

Unfortunately, Pr(6 & (L, UDY) >1—-a.
usually = 0.



VWe want “safe, anytime-valid inference” (SAVI) methods

SAVI methods are those that yield valid inference at
arbitrary stopping times, possibly not specified or anticipated in advance.

SAVI methods allow for continuous monrtoring and analysis of data,
adaptive decisions to halt or continue experiments (for any reason),
all without violating the validity of the claims.

Provides a lot of flexibility to the statistician (“'peeking™),
useful for a lot of exploratory settings, or those without oversight
(like universrity labs and tech industry).

Now, forget about statistical inference briefly, let's get to betting,



A New Interpretation of Information Rate
reproduced with permission of AT&T

By J. L. KELLY, JR.

(Manuscript received March 21, 1956)

If the input symbols to a communication channel represent the outcomes of a
chance event on which bets are available at odds consistent with their probabilities
(i.e., “fair” odds), a gambler can use the knowledge given him by the received
symbols to cause his money to grow exponentially. The maximum exponential
rate of growth of the gambler’s capital is equal to the rate of transmission of
information over the channel. This result is generalized to include the case of
arbitrary odds.




Suppose we observe iid coin flips B; of bias p > 1/2 (for known p).

We start with one dollar, and can make “double or nothing” bets
(In each round, we bet some fraction 4 of our wealth on heads,
it H, we earn that amount, and If T, we lose that amount.)

What fraction 4 of our wealth should we bet at each step?

W(A) = H(l + A(2B; — 1)) is wealth after ¢ rounds.
i=1

W, = exp ( Z log(1 + /lBi)) = exp (t-[log(l + AB)] + O(t))

= .. ElogW(4)
Kelly: choose A to maximize lim t = [E[log(1 + AB)].
[—O0

Solution: bet 4* = 2(p — 1/2) on heads.

Optimal Wealth W(4*) = exp(z - H(p|0.5)4+0(?)),
where H is the relative entropy (KL divergence)
Equivalently, E[log W]/t = H(p|0.5)




OPTIMAL GAMBLING SYSTEMS FOR
FAVORABLE GAMES

L. BREIMAN
UNIVERSITY OF CALIFORNIA, LOS ANGELES

1. Introduction

Assume that we are hardened and unscrupulous types with an infinitely
wealthy friend. We induce him to match any bet we wish to make on the event
that a coin biased in our favor will turn up heads. That is, at every toss we have
probability p > 1/2 of doubling the amount of our bet. If we are clever, as well
as unscrupulous, we soon begin to worry about how much of our available for-
tune to bet at every toss. Betting everything we have on heads on every toss
will lead to almost certain bankruptcy. On the other hand, if we bet a small,
but fixed, fraction (we assume throughout that money is infinitely divisible) of
our available fortune at every toss, then the law of large numbers informs us
that our fortune converges almost surely to plus infinity. What to do?

Generalizes Kelly betting to other settings.

Proves that the Kelly criterion also asymptotically optimizes
a) Expected time to reach a threshold wealth
b) Expected wealth at some threshold time

Ok, now let's tie the two together: betting and statistics



Shafer & Vovk
EoS@ (+ Robbins, implicitly)

lesting by betting

In order to test a hypothesis, one sets up a game such that:
it the null Is true, no strategy can systematically make (toy) money,
but If the null Is false, then a good betting strategy can make money.

VWealth in the game Is directly a measure of evidence against the null.
Fach strategy of the statistician = a different estimator or test statistic.

S0 there are “good” and “bad’’ strategies for betting,
just as there are good and bad estimators or test statistics.

Testing (and estimation) == game and strategy design.

Kelly's game corresponds to Hy : fair coin against H; : bias p



Outline of this talk

‘ J) “Sequential anytime-valid inference (SAVI)”

2. lesting by betting yields SAVI inference (parametric)

3. Core SAVI concepts

4. Optimal gambling strategies




VWould you like some tea?

No,TinM#MinT
—

Can you redlly tell them apart!
_——————————

Indeed, yes!
. — ° °
Ronald Fisher Muriel Bristol

w¥ 'Www . 0O

T M T T M M M T

What's the probability that a chance guess would be perfect! /70

This is a p-value for H, : there is no difference between MT and TM.
Randomization-based causal inference, design of experiments. ..



The lady tasting tea (1920s)

w¥ 'ww ' )/

T M T 1 M M M T

However, the odds were stacked against Muriel from the start!

The probability that a chance guess would yield at most one error Is
1 7/70 =~ 0.24, which is not so impressive.

With the benefit of 100 years of hindsight, | would have (and did)
run the experiment quite differently...



The lady keeps tasting coffee (2020)

Let's play a game
————————————

Umm...sure...?
—

't iInvolves coffee
e

Surel! WY
-— .
| eila VWehbe

M C




The lady keeps tasting coffee (2020, betting)

Result?
R, =-1 ﬂ Q Ay = 0.2 (on heads)
Ry =+1 $ ;! 4, = 0.4 (on heads)

I+ AHR) =112
A
— H(l + A;R)), where (4.) are “predictable” bets in [-1,1].

Under the null, (Lf)reN s a nonnegative martingale (“‘fair game’).



The lady keeps tasting coffee (2020, betting)

[
L, = H(l A.R:), where (4.) are “predictable” bets in [0, ].
i=1

Under the null, (L[)teN S a nonnegative martingale (“'fair game’).

At any stopping time 7, £y [L;] < 1 — optional stopping theorem.

It the null holds, then Lella is unlikely to turn one pound into fifty

- L, directly measures evidence against H,, ("e-process”).

. igf 1/L, is an “anytime-valid p-value” or “p-process”.
SI

» 1{L, > 1/a} is a level-a sequential test for H,y .

Wald, Robbins, Shafer,Vovk, Grunwald, Ramdas, ...




Why is this interesting?

(a) simple and clean approach to sequential experimental design
(b) can express doubt naturally

(c) cooperation between subject and statistician allowed between rounds
(d) flexible (can design many games for each problem)

(e) make up the game (and extend the game) on the fly

(f) evidence only depends on what did occur, not on hypothetical worlds

Addresses 3 Issues of p-values: peeking, optional continuation of
experiments, reasoning about hypothetical worlds.



Outline of this talk

(7) "Sequential anytime-valid inference (SAVI)”

( / ) Testing by betting yields SAVI inference (parametric)

3. Core SAVI concepts

4. Optimal gambling strategies




Hypothesis testing in statistical practice

The “null hypothesis™ H,, is a set of distributions &
defined on some filtered measurable space (£2, ).

The “alternative hypothesis” H; is a set of distributions @
defined on the same space.

When we are testing H, against H;, we are asking If the
data are coming from some distribution in & or in Q.

Nothing i1d 1s assumed In the above notation,
these distributions could be over sequences of observations.

In statistical practice, the null has a special role (eg:"no effect”).
Rejecting the null may correspond to an interesting scientific
phenomenon (described by the alternative).

Thus the first goal Is to calibrate/control errors under the null.




A p-process (or anytime-valid p-value) for a null
H,: P € & is a sequence (p,),»; that satisfies

For any stoppingtme z,P € &P : P(p, < a) L a.

Johari et al. (2015, 2021),

Howard, Ramdas, et al. (2013, 202 1)



A p-process (or anytime-valid p-value) for a null
H,: P € & is a sequence (p,),»; that satisfies

For any stoppingtme z,P € &P : P(p, < a) L a.

Johari et al. (2015, 2021),

Howard, Ramdas, et al. (2013, 202 1)

An e-value for H is a [0,00]-valued r.v. e s.t.
VP € &P, Ep(e) < 1. (e for evidence or expectation)

An e-process for H, is a sequence of e-values (¢,

s.t. for any stopping time 7, P € & :

—p(e,) < 1.

Howard, Ramdas, et al. (2018-2021)

Grunwald et al. (2019-2021)

Shafer (2020),Vovk & Wang (202 1)



For simple H, = { P}, likelihood ratios are e-processes
_qXy, .. X)
" opXy, .., X)

For composite nulls &, nonnegative martingales yield e-processes

M is a test martingale for 2? if M > 0, My = 1, and
_P[MZ“MI’ ""Mt—l] - Mt—l fOl” a” P - @,tZ 1

Nonnegative supermartingales are also e-processes

M is a test supermartingale for P it M > 0, My = 1 and
oM M, ...M,_ ] <M_,forallPe P t>1

But there are e-processes which are not
dominated by any test super martingale.

Averages of dependent e-processes are e-processes (also e-values).
Products of independent e-values are supermartingales (hence e-processes).



Ville’s martingale theorem & inequality

| ' - - Ville'39
It (Lt)IZO s a nonnegative martingale under P, with Ly = 1,
P(dJteN:L >1/a) L a.

VWhat he really proved:

For any event A which has measure zero under P, there exists

a nonnegative martingale M (under P) such that M = oo if A occurs.

In fact, both directions hold. An event has measure zero it and only if

there exists a nonnegative martingale that blows up on that event.

Further, an event A has probabllity a iff some nonnegative martingale
reaches 1/a on A. This is summarized in Ville's inequality.

Finally, if L is an e-process for a set of distributions &, then

sup P(dtreN: L >1/a) L a.
Pe&r



A composite generalization of Ville’s theorem

For any event A with P(A) = 0, there exists a nonnegative martingale M
(under P) such that M = oo if A occurs.

s there a version of this statement for sets of distributions P!

First try: say P(A) = 0 for all P € & above. Unfortunately, this is provably incorrect.

Right answer: define a certain “outer measure” SP(A), omitted here.
Theorem: For any event A, we have &P(A) = 0O iff there exists an e-

process M for & such that M = oo if A occurs. (+Simplifications fail)

Example application: a distribution-uniform strong law of large numbers
has Its fallure (a “measure zero' event) witnessed by an explicit e-process.

Ruf, Larsson, Koolen, Ramdas (EJF, 2023)



Outline of this talk

@ Motivation for “safe anytime-valid inference (SAVI)”

( / ) Testing by betting yields SAVI inference (parametric)

(/ } Core SAVI concepts

4. Optimal gambling strategies




Point nulls and alternatives
Hy: X ~ Pversus H : X, ~ Q (assuming P < Q, 0 < P)

What Is the game!
Initial capital W, =1

Foreacht = 1,2,...

Statistician declares “bet” S, : & — [0,00) st Ep[S(X) | X;, ..., X1 < 1
Reality reveals X,
Statistician’s wealth becomes W, = W,_, - $(X))

\/\/ha i I—timaleingtraey? - Answer I|I<e||hood ratloon to P

The log-optimal bet is $,(x) = &
px)
X.
W2 = H 9x) s the log-optimal wealth process:

| p(X))

, =1

;'i — it is a positive test martingale under P, Ep[W_] < 1,Ep[log W] < 0.
_ [EQ[log WT] > O S ma><|m|zed by th|s ch0|ce of bets, equals H(Q | P)

Shafer (ZOZI JRSSA d|scu35|on paper)



Proof in two steps (analog of Neyman-Pearson)

Step |: Dropping the conditioning for simplicity,
statistician declares “bet” S, : X' — [0,00) st. Ep[S(X)] < 1.

f strict iInequality holds, we can use the new

still valid. Further, E[log S,] > E[log S,]

Note that every admissible bet must satisty the above with equality. VWhy!?

"~/

5

oet S, 1=
[EP[St(X)]

“which Is

Step 2: Thus, every admissible bet satisfies [St(x)p(x)dx = 1.

Define r(x) := $,(x)p(x), and note that the above implies r, is a density.
Rewriting, we must have S,(x) = r/(x)/p(x) for some r,(x).

Now note that [, |log

< E, |log

px) |

0] b [0 490
px)

q(x)
r(x)

because 0 < E, |log




E versus P

In the P-world, we judge In the E-world, we ju'dge
tests by probabilities: e-values by expectations:
_HO[W]
max Py (p(X) = 1) power and
¢ CH, [log W]
st Ho(¢(X) = =a (“e-power’ or “growth rate”)
This is a theory This is a theory of
of decision making evidence

We are designing a complementary theory to (say) Neyman-Pearson.
VWhen you see an e-value or e-process, ask about its e-power or growth rate,
not Its power (a p-concept) — there Is some loss In transforming one to other.



Simple null vs. Composite alternative

Hy:X;~P versus H : X, ~ {OQp}pceo

Option | Mix (hedge your bets) with “prior” z

T
%)(Xi)
! J@ i=1 p(Xl) ]z.( )

Option 2: Plug-in a representative éi = 0(X;,...,X;_;) in each round

L g él.(Xi)
e pX))

WT —

| - q*X)
Typically, lim [ «[log Wr]/T = [« |log ,

T— o0 p(X) ]
which is the best possible “growth rate”, even without knowing Q.




To summarize what was known

» For testing a point null P against point alternative Q,
ikelihood ratios are optimal per-round bets

* [he optimal wealth s the likelihood ratio process.

* The optimal rate of growth (exponent) of the wealth Is
exactly the KL divergence or relative entropy of Q to P.

What about composite nulls?

Significant progress by Peter Grinwald and coauthors in two papers

("Safe Testing’” and “Universal Reverse In’

ormation Projection and

Optimal E-statistics™). VWe com

blete the story.



The numeraire e-variable
and reverse information projection

arXiv:2402.18810

8l

Martin Johannes
Larsson Ruf

(CMU) (LSE)



Our setting: Composite null vs. Simple alternative

» We have a composite null hypothesis & and a point
alternative hypothesis 0. The data is either drawn from some
P in & (the null is true), or from Q (the null is false).

« A valid bet is an “e-variable”, which is a X > 0 such that

o[ X] < 1 forevery P € 9. Think of X as being the multiplier
of your wealth in each round of a multi-round game.

»+ Question:What is the optimal one-round bet X*? s it unique?
Can we characterize/derive 1t

» Answer: It is the likelihood ratio of Q to a special element P*,
which we call the Reverse Information Projection (RIPr).

Our work tells a complete story about (X*, P*).



Our setting: rephrased

(2 is a set of possible outcomes

A Forecaster claims that & describes the world well,
meaning that outcomes/events are well described by some P € &.

A Skeptic thinks that Forecaster Is Inaccurate,
and believes that Q is a better model for the world.

Forecaster offers bets based on his forecasts. A valid bet

IS an e-varia
SUC

N that

_P[X] <1

ble, which is a random variable X : Q — IR(J)r

or every P € &.

After Skeptic picks a particular bet X, we observe the outcome w.
Skeptic's realized payout is X(w).

Which bet should the skeptic pick?

A:The log-optimal bet X* is the likelihood ratio of O to the RIPr P*.



Introducing X*, the “numeraire” e-variable

Theorem: Under no assumptions on null & and alternative Q,
there always exists a special e-variable (bet) X* which satisfies

two properties:

A. First, X* > 0 and Ep[X*] < 1, VP € & (the e-variable

or fair bet property)
B. Second, for any e-variable X, we have

‘numeraire property”)

EOIX/X#] < 1 (the

Further, X* Is unique up to Q-nullsets. In fact, X* is the numeraire

it and only it it I1s log-optimal.

Applying Jensen’s iInequality, we get two ot
implications: for any e-variable X, we have

and [E,[log(X/X*)] < 0 (log-optimality!)

ner Iinterpretable




Introducing P*, the reverse information projection

Definition; Define a measure P* by defining its likelihood ratio
(Radon-Nikodym derivative) with respect to Q:

dP*/dQ = 1/X*

» This is understood to be zero on {X* = o0 }.
» P* < Q by definition. Also X* = dQ/dP* by definition.
» P* s not a probability measure in general, it is a sub-probability

measure, meaning that | dP* < 1.

» P* lies in the bipolar of &, which is de

A. The polaris ° :={X >0:E

P

which 1s simply the set of all e-varia

B. The bipolaris &#* :={P >0 :

P

which we also call “‘the effective nul

ined as follows.
X

]<1forall P e 9},
ples.
X] <1foral X € &°},

hypothesis'.



Notation

* We making the simplifying assumption In the rest of the talk that
0 < P, meaning that whenever P(A) = 0 for every P € &,
we also have Q(A) = 0. Very weak assumption!

 Recall that the KL divergence or relative entropy Is defined as

HQ|P) : llog dQl fOQ <K P,00 0
.= _Q d_P I . W.

« If P denotes the absolutely continuous part of P wrt Q, we

| dP“
can rewrite H(Q | P) = [k [—log ]

dQ



Strong duality of (X*, P*)

Theorem; Assume Q < & for simplicity. Let X* be the numeraire
and let P* be an element of & that is equivalent to Q.

The following statements are equivalent:
— P* is the RIPr:

<1 foral P e 9

dP“ Ny
—o |1og <Oforall P € 9
dP*

0 | gp

T any of these hold, then one has the strong duality:

- llog X¥] = sup Eyllog X] = inf H(Q|P) = H(Q|P*)
Xe Per

where these quantities may equal + oo.




Estimation of Mixture Models

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by

Qiang (Jonathan) Li

Dissertation Director: Andrew R. Barron

May 1999



4.2 A New Information Projection Theory

In our theory, we reverse the order of the arguments in the K-L divergence. An analogous
information projection theory is obtained. Applications to maximum likelihood estimation
require this reversal of the order in the K-L divergence. We build upon a theory of Bell and
Cover [1980], who in a portfolio selection contex developed the story under an assumption

that a minimizer of D(P||Q), @ €C exists.

Again we consider a convex set C of probability measures. Let P be a probability

measure of our interest. Define
D(P|C) = jnf D(PIIQ).

Similar to T-C theory, we also want to establish existence, uniqueness and character-

izing Pythagorean Identity of a projection P* of P onto C.

DEFINITION 4.2 (Reversed Information Projection) Given a probability measure
P with a density p and a convez set C of densities q, a function ¢* is called the (reversed)

information projection if for every g, with D(p||¢g.) — D(p||C), we have logg, — logq®

in L'(P).

THEOREM 4.3 (Properties of the Reversed I-Projection) Let C be a convez set
of probability measures Q with densities q and let P be a target measure with density
p. Then the reversed I-projection q* of P ezists and is unique. Moreover it satisfies the

following properties:
1. D(plig") = infgec D(pllq),
2. c,,:fpa%gLquc,
3. D(pllg) > D(pllg*) + D(p||p) where p = E!_quﬁ is a density depending on q.

36

Our theory recovers these
as a special case.
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d I'le > ¢s > arXiv:2306.16646
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[Submitted on 29 Jun 2023 (v1), last revised 4 Dec 2023 (this version, v2)]

Universal Reverse Information Projections and Optimal E-statistics
Tyron Lardy, Peter Griinwald, Peter Harremoés

Information projections have found important applications in probability theory, statistics, and related areas. In the field of hypothesis testing in particular, the reverse
information projection (RIPr) has recently been shown to lead to so-called growth-rate optimal (GRO) e-statistics for testing simple alternatives against composite null
hypotheses. However, the RIPr as well as the GRO criterion are undefined whenever the infimum information divergence between the null and alternative is infinite. We
show that in such scenarios there often still exists an element in the alternative that is 'closest' to the null: the universal reverse information projection. The universal
reverse information projection and its non-universal counterpart coincide whenever information divergence is finite. Furthermore, the universal RIPr is shown to lead to
optimal e-statistics in a sense that is a novel, but natural, extension of the GRO criterion. We also give conditions under which the universal RIPr is a strict sub-probability
distribution, as well as conditions under which an approximation of the universal RIPr leads to approximate e-statistics. For this case we provide tight relations between
the corresponding approximation rates.

We work with a measurable space (£2,F) and, unless specified otherwise, all measures will be defined on this space.
Throughout, P will denote a finite measure and C a set of finite measures, such that P and all () € C have densities w.r.t. a
common o-finite measure . These densities will be denoted with lowercase, i.e. p and g respectively. We will assume throughout
that C is o-convex, i.e. closed under countable mixtures, though we will refer to this simply as ‘convex’. Furthermore, we
assume that there exists at least one @* € C such that P < @*. On the one hand, this ensures that D(P||Q ~» C) is a
well-defined number in [0, oo] for any @) € C. On the other hand, it aligns with our philosophy when we turn to hypothesis

Our theory avoids all these assumptions



A bit more about the bipolar &

yp*
Q

Let M, denote the set of all probability measures.
Let M, denote the set of all nonnegative measure.
Aset C C M_ is called“solid” If, for every P € C, we also have
P’ € C whenever P’ < P.

e@Oo

It P is finite, then PP N M| = conv(<).

If a reference measure u exists for &, then every P € 9 is also
absolutely continuous wrt u, and 9 is the smallest p-closed solid
convex set that contains .



A bit more about (X*, P*)

d
Recall that X* = Q by definition of P*.
dP*

We say that P dominates P’ if P(A) > P'(A) for all A, with strict
inequality for some A.

Theorem: Assume O <K L. Let X* be an e-variable, and let P* be
defined by dP*/dQ = 1/X*.Then X* is the numeraire iff P* € 97,

In this case, X* is Q-a.s. positive, and P* is equivalent to Q.
Further, X* Is the only e-variable which can be written as the

likelihood ratio of Q to some element in P, Finally, P* is also
maximal, meaning that it cannot be dominated by any other element

of &P*° that is absolutely continuous wrt Q.




Example |: Symmetric distributions

L et Z denote the data, in this case real-valued.
P .={PeM,:Zand — Z have the same distribution under P}

Note that & has no dominating reference measure.
Suppose Q has a Lebesgue density g.

Older theory does not apply in this case. But we can easily show
Z) +q(—z2
p*(z) = 1) ZQ( ) 1{g(z) > 0} is the RIPr density.

[t is a probability density iff O has symmetric support.

2q(Z)

We can also show that X* = s the numeraire.
q(Z) + q(—2)

(In the paper, we generalize beyond Q with Lebesgue density.)



Example 2: |-Sub-Gaussian distributions

P .={PeM,: -P[e’lz_’lz/z] < lforall4 >0}

Above condition implies that E,[Z] < 0 forall P € &°.
Let O = N(u,1) for some known u > 0.

Once more, & has no reference measure. So older theory does
not apply.

But we can easily show that exp(uZ — u*/2) is the numeraire
and N(0,1) is the RIPr.



Example 3:a parametric example from Lardy et al.

P .= {P,, P,}, where P, = N(—1,1) and P, = N(1,1).

Let O be a centered Cauchy distribution.

Note that H(Q | P;) = .

Nevertheless, the RIPr is P* = (P; + P,)/2

and the numeraire is X* = 2q(Z£)/(p,(Z)

pr(Z)).

In the paper we generalize this to Q being any symmetric
distribution (but note the much smaller null).



Example 4: one-parameter exponential families

Consider an exponential family with density
pe(2) = exp(0T(z) — A(@)) for0 € ® C R
with respect to a reference measure K,
and A is convex and differentiable.

The null is given by & := {p,: 0 € O, C O},
and we assume 0O, is closed, with smallest element 6*.
The alternative is p, for some 6, < 6*.

We can show that py« I1s the RIPr. Thus the numeraire Is
the likelihood ratio py /pgs

Csiszar and Matus (2003) have an extensive study of the RIPr
for exponential families.



Beyond logarithmic utility

Consider the optimization problem sup E,[U(X)]
Xeo”
for a continuous, increasing, concave, differentiable, bounded U.

Foreg, U(x) = x"7/(1 —y) fory > 1.

We can show that a maximizer X7 exists and is unique.
(X*)7

= ol (X177 |

Define the Renyi divergence of order 1/y as

1 dpa\ '~
Dl/y(Q‘P) .= I/y—llog 0 (dQ) -

Further, define P € 9 by

Theorem: X* and P¥ attain the extrema in the strong duality:

4
sup E,[UX)] = ——exp ((y—l —1) inf“Dl/y(Q\P)>
XePpr* —7 Pe9p




Summary

We have fully generalized Kelly betting to composite nulls and point
alternatives, yielding a strong duality between (X*, P*).

We have defined the reverse information projection P* (RIPr) and
the the optimal e-variable X* (numeraire) without any assumptions.

We showed how to apply this theory to new nonparametric
settings that were previously out of reach.

We showed how to generalize this story to general utilities that are
continuous, INcreasing, concave, differentiable, bounded.

Next steps: more general utilities, composite alternatives, and
sequential betting strategies (we have ideas for all of these),

EM? Covariate shift?




The numeraire e-variable
and reverse information projection
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Outline of this talk

@ Motivation for “safe anytime-valid inference (SAVI)”

( / ) Testing by betting yields SAVI inference (parametric)

(J } Core SAVI concepts
(J) Optimal gambling strategies




E-processes for composite null vs. composite alternative?

Likelihood of alternative P,

Likelihood of null Py

‘i : 1 Game—theoreth
"requentst Sayes (wealth in a game)

Maximum (alt) likelihood Mixture (alt) likelihood Mixture or plug-in (alt) likelihood

Maximum (null) Likelihood Mixture (null) Likelihood Maximum (null) Likelihood

Can use “prior’ information to bet
on the alternative.
But evidence I1s compared to best null.

Only the last option Is an e-process (the “universal inference’ e-process).
[t has the asymptotically optimal growth rate (Dixit-Martin23).

Universal Inference (PNAS 2020) and Testing exchangeability (I|AR22)



(Continued: “universal inference”)

Mixture/Plug-in (alt) likelihood v 96X
= , —— = H IS an e-process.
Maximum (null) Likelihood P Pa (X))

Also If the numerator is nonparametrically chosen smartly, then
universal inference (above) is also asymptotically growth rate optimal

Under mild conditions, E[log W, |/T — K(Q%*, &)

Dixit and Martin (2023, arXiv)

As an e-value, It Is always worse than the numeraire,
but the numeraire Is an e-value, while universal inference Is an e-process.

Open problem; determine when the sequence of numeraires (at
increasing sample sizes) does or does not yield an e-process.




Summary

Testing by betting Is a simple framework for hypothesis testing that
yields sequential, anytime-valid inference.

Optimal gambling strategies are based on likelihood ratios.
Composite alternatives are handled using mixtures (hedging).
Composite nulls are handled using reverse information projections,
or via universal inference (maximum-likelihood under the null).

(Composrite) Nonnegative (super)martingales are secretly likelihood
ratios, even when no reference measure exists.

E-processes exist more generally, even when nonnegative
supermartingales do not exist. [ hey are central objects: necessary
and sufficient for sequential testing.



