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Outline of this lecture series

1. Today: game-theoretic testing

2. Tomorrow morning: game-theoretic estimation

3. Tomorrow afternoon: game-theoretic change detection



Outline of this talk

1. “Sequential, anytime-valid inference (SAVI)”

2. Testing by betting yields SAVI inference (simple example)

3. Core SAVI concepts 

4. Optimal gambling strategies (second half of the talk, most interesting!) 



An infamous instance of  “peeking at p-values” is the 
power-posing controversy (Amy Cuddy, Dana Carney).

“Sampling to a foregone conclusion” — Anscombe (1950s)



Collect data  
(increase sample size) Check if P(n) ≤ α

“peek”

“optional continuation”
Stop, 

Report

“optional stopping”

Start

With commonly-taught p-values,  
false positive rate ≫ α .

What is the problem with continuous monitoring?



Let P(n) be a classical p-value (eg: t-test),
 calculated using the first n samples.

Let τ be the stopping time of the experiment.

Under the null hypothesis (no treatment effect),

∀n ≥ 1, Pr(P(n) ≤ α)

prob. of false positive

≤ α .

Unfortunately, Pr(P(τ) ≤ α) ≰ α .

Often, τ depends on data, eg: τ := min{n ∈ ℕ : P(n) ≤ α} .

Not special to p-values. Same holds for confidence intervals.

usually = 1.



Collect data  
(increase sample size)

Check if 0 ∉ (1 − α) CI

“peek”

“optional continuation”

Stop

“optional stopping”

Start

Again, false positive rate ≫ α .

Stop, 

Same issue with confidence intervals



Let (L(n), U(n)) be any classical (1 − α) CI,
 calculated using the first n samples.

Let τ be the stopping time of the experiment.

When trying to estimate the treatment effect θ,

∀n ≥ 1, Pr(θ ∈ (L(n), U(n)))

prob. of coverage

≥ 1 − α .

Unfortunately, Pr(θ ∈ (L(τ), U(τ))) ≱ 1 − α .

Again, τ may depend on data, eg: τ := min{n ∈ ℕ : L(n) > 0} .

usually = 0.



We want “safe, anytime-valid inference” (SAVI) methods

SAVI methods are those that yield valid inference at  
arbitrary stopping times, possibly not specified or anticipated in advance. 

SAVI methods allow for continuous monitoring and analysis of data, 
adaptive decisions to halt or continue experiments (for any reason), 
all without violating the validity of the claims. 

Provides a lot of flexibility to the statistician (“peeking”),  
useful for a lot of exploratory settings, or those without oversight 
(like university labs and tech industry).

Now, forget about statistical inference briefly, let’s get to betting.





Suppose we observe iid coin flips  of bias  (for known ).

We start with one dollar, and can make “double or nothing” bets
(In each round, we bet some fraction  of our wealth on heads, 

if H, we earn that amount, and if  T, we lose that amount.)

Bi p > 1/2 p

λ

What fraction  of our wealth should we bet at each step?λ
 is wealth after  rounds. Wt(λ) :=

t

∏
i=1

(1 + λ(2Bi − 1)) t

Wt = exp (
t

∑
i=1

log(1 + λBi)) = exp (t𝔼[log(1 + λB)] + o(t))
Kelly: choose  to maximize .λ lim

t→∞

𝔼 log Wt(λ)
t

= 𝔼[log(1 + λB)]

Solution: bet  on heads.λ* = 2(p − 1/2)
Optimal Wealth ,

where  is the relative entropy (KL divergence)
Equivalently, 

Wt(λ*) = exp(t ⋅ H(p |0.5)+o(t))
H

𝔼[log Wt]/t = H(p |0.5)



Generalizes Kelly betting to other settings.

Proves that the Kelly criterion also asymptotically optimizes 
a) Expected time to reach a threshold wealth
b) Expected wealth at some threshold time

Ok, now let’s tie the two together: betting and statistics



In order to test a hypothesis, one sets up a game such that:  
if the null is true, no strategy can systematically make (toy) money, 

but if the null is false, then a good betting strategy can make money.
 

Wealth in the game is directly a measure of evidence against the null.
 

Each strategy of the statistician = a different estimator or test statistic.  
So there are “good” and “bad” strategies for betting, 

just as there are good and bad estimators or test statistics.

Testing (and estimation) == game and strategy design. 

Testing by betting Shafer & Vovk
(+ Robbins, implicitly)

Kelly’s game corresponds to  against H0 : fair coin H1 : bias p



Outline of this talk

1. “Sequential anytime-valid inference (SAVI)”

2. Testing by betting yields SAVI inference (parametric)

3. Core SAVI concepts 

4. Optimal gambling strategies 



Muriel BristolRonald Fisher

The lady tasting tea (1920s)

Would you like some tea?

No, T in M  M in T≠

Can you really tell them apart?

Indeed, yes!

T M M M MT T T

What’s the probability that a chance guess would be perfect? 1/70
This is a p-value for  there is no difference between MT and TM. 

Randomization-based causal inference, design of experiments…
H0 :



The lady tasting tea (1920s)

T M M M MT T T

However, the odds were stacked against Muriel from the start!

The probability that a chance guess would yield at most one error is 
17/70 , which is not so impressive.≈ 0.24

With the benefit of 100 years of hindsight, I would have (and did)  
run the experiment quite differently…



The lady keeps tasting coffee (2020)

Leila Wehbe(self)

Let’s play a game

Umm…sure…?

It involves coffee

Sure!

CM

CM

…



The lady keeps tasting coffee (2020, betting)

R1 = − 1 λ1 = 0.2 (on heads)

L1 = L0 ⋅ (1 + λ1R1) = 0.8

λ2 = 0.4 (on heads)R2 = + 1

L2 = L1 ⋅ (1 + λ2R2) = 1.12

, where  are “predictable”  bets in [-1,1].Lt :=
t

∏
i=1

(1 + λiRi) (λi)

…

Under the null,   is a nonnegative martingale (“fair game”).(Lt)t∈ℕ

L0 = 1
Result?



The lady keeps tasting coffee (2020,  betting)

, where  are “predictable”  bets in [0,1].Lt :=
t

∏
i=1

(1 + λiRi) (λi)

Under the null,   is a nonnegative martingale (“fair game”).(Lt)t∈ℕ

At any stopping time ,  — optional stopping theorem.τ 𝔼H0
[Lτ] ≤ 1

Ville’s inequality (time-uniform Markov’s for nonneg. supermartingales)
Pr(∃t ∈ ℕ : Lt ≥ 1/α) ≤ α .

If the null holds, then Leila is unlikely to turn one pound into fifty
•  directly measures evidence against  (“e-process”).
•  is an “anytime-valid p-value” or “p-process”.

•  is a level-  sequential test for 

Lt H0
inf
s≤t

1/Ls

1{Lt ≥ 1/α} α H0 .
Wald, Robbins, Shafer, Vovk, Grunwald, Ramdas, …



Why is this interesting?

(a) simple and clean approach to sequential experimental design 

(b) can express doubt naturally 
 
(c) cooperation between subject and statistician allowed between rounds 
 
(d) flexible (can design many games for each problem) 
 
(e) make up the game (and extend the game) on the fly 
 
(f) evidence only depends on what did occur, not on hypothetical worlds

Addresses 3 issues of p-values: peeking, optional continuation of 
experiments, reasoning about hypothetical worlds. 



Outline of this talk

1. “Sequential anytime-valid inference (SAVI)”

2. Testing by betting yields SAVI inference (parametric)

3. Core SAVI concepts 

4. Optimal gambling strategies 



Hypothesis testing in statistical practice

The “null hypothesis”  is a set of distributions 
defined on some filtered measurable space .

The “alternative hypothesis”  is a set of distributions 
defined on the same space.

H0 𝒫
(Ω, ℱ)

H1 𝒬

When we are testing  against , we are asking if the 
data are coming from some distribution in  or in .

Nothing iid is assumed in the above notation, 
these distributions could be over sequences of observations.

H0 H1
𝒫 𝒬

In statistical practice, the null has a special role (eg: “no effect”).
Rejecting the null may correspond to an interesting scientific 

phenomenon (described by the alternative). 
Thus the first goal is to calibrate/control errors under the null.



Johari et al. (2015, 2021), 
Howard, Ramdas, et al. (2018, 2021)

A p-process (or anytime-valid p-value) for a null
 is a sequence  that satisfiesH0 : P ∈ 𝒫 (pt)t≥1

For any stopping time τ, P ∈ 𝒫 : P(pτ ≤ α) ≤ α .



A p-process (or anytime-valid p-value) for a null
 is a sequence  that satisfiesH0 : P ∈ 𝒫 (pt)t≥1

Johari et al. (2015, 2021), 
Howard, Ramdas, et al. (2018, 2021)

An e-process for  is a sequence of e-values H0 (et)t≥1

For any stopping time τ, P ∈ 𝒫 : P(pτ ≤ α) ≤ α .

s.t. for any stopping time τ, P ∈ 𝒫 : 𝔼P(eτ) ≤ 1.

Howard, Ramdas, et al. (2018-2021)  
Grunwald et al. (2019-2021) 

Shafer (2020), Vovk & Wang (2021)

An e-value for  is a -valued r.v.  s.t. 
 (e for evidence or expectation)

H0 [0,∞] e
∀P ∈ 𝒫, 𝔼P(e) ≤ 1.



For simple , likelihood ratios are e-processesH0 = {P}

For composite nulls , nonnegative martingales yield e-processes𝒫

Nonnegative supermartingales are also e-processes

But there are e-processes which are not 
dominated by any test super martingale.

Mt =
q(X1, …, Xt)
p(X1, …, Xt)

 is a test martingale for  if , , and 
 for all , .

M 𝒫 M ≥ 0 M0 = 1
𝔼P[Mt |M1, …, Mt−1] = Mt−1 P ∈ 𝒫 t ≥ 1

 is a test supermartingale for  if ,  and 
 for all , .

M 𝒫 M ≥ 0 M0 = 1
𝔼P[Mt |M1, …, Mt−1] ≤ Mt−1 P ∈ 𝒫 t ≥ 1

Averages of dependent e-processes are e-processes (also e-values). 
Products of independent e-values are supermartingales (hence e-processes).



Ville’s martingale theorem & inequality
Ville’39If  is a nonnegative martingale under , with , (Lt)t≥0 P L0 = 1

P(∃t ∈ ℕ : Lt ≥ 1/α) ≤ α .

What he really proved:   
For any event  which has measure zero under , there exists 
a nonnegative martingale  (under ) such that  if  occurs.

In fact, both directions hold. An event has measure zero if and only if 
there exists a nonnegative martingale that blows up on that event.

Further, an event  has probability  iff some nonnegative martingale 
reaches  on .  This is summarized in Ville’s inequality.

Finally, if  is an e-process for a set of distributions , then 

A P
M P M = ∞ A

A α
1/α A

L 𝒫
sup
P∈𝒫

P(∃t ∈ ℕ : Lt ≥ 1/α) ≤ α .



A composite generalization of Ville’s theorem
For any event  with , there exists a nonnegative martingale  
(under ) such that  if  occurs. 
Is there a version of this statement for sets of distributions ? 
 

A P(A) = 0 M
P M = ∞ A

𝒫

Ruf, Larsson, Koolen, Ramdas (EJP, 2023)

First try: say  for all  above. Unfortunately, this is provably incorrect.P(A) = 0 P ∈ 𝒫

Right answer: define a certain “outer measure” , omitted here. 
Theorem: For any event , we have  iff there exists an e-
process  for  such that  if  occurs. (+Simplifications fail)

𝒫(A)
A 𝒫(A) = 0

M 𝒫 M = ∞ A

Example application: a distribution-uniform strong law of large numbers 
has its failure (a “measure zero” event) witnessed by an explicit e-process.



Outline of this talk

1. Motivation for “safe anytime-valid inference (SAVI)” 
 
Testing by betting yields SAVI inference (parametric)

3. Core SAVI concepts 

4. Optimal gambling strategies 



Point nulls and alternatives
 versus  (assuming )H0 : Xi ∼ P H1 : Xi ∼ Q P ≪ Q, Q ≪ P

The log-optimal bet is . 

 is the log-optimal wealth process: 

— it is a positive test martingale under ,  
—  is maximized by this choice of bets, equals 

St(x) =
q(x)
p(x)

W*T =
T

∏
i=1

q(Xi)
p(Xi)

P 𝔼P[Wτ] ≤ 1,𝔼P[log Wτ] ≤ 0.
𝔼Q[log WT] > 0 H(Q |P)

Answer: likelihood ratio of Q to P

Shafer (2021, JRSSA discussion paper)

What is the log-optimal betting strategy?

Initial capital  

For each 
      Statistician declares “bet”  s.t. 
      Reality reveals  
      Statistician’s wealth becomes 

W0 = 1

t = 1,2,…
St : 𝒳 → [0,∞) 𝔼P[St(X) |X1, …, Xt−1] ≤ 1

Xt
Wt = Wt−1 ⋅ St(Xt)

What is the game?



Proof in two steps (analog of Neyman-Pearson)

Step 1: Dropping the conditioning for simplicity, 
statistician declares “bet”  s.t. .

Note that every admissible bet must satisfy the above with equality. Why? 

If strict inequality holds, we can use the new bet , which is 

still valid. Further, .

St : 𝒳 → [0,∞) 𝔼P[St(X)] ≤ 1

S̃t :=
St

𝔼P[St(X)]
𝔼Q[log S̃t] > 𝔼Q[log St]

Step 2:  Thus, every admissible bet satisfies . 

Define , and note that the above implies  is a density.
Rewriting, we must have  for some .

Now note that  because .

∫ St(x)p(x)dx = 1

rt(x) := St(x)p(x) rt
St(x) = rt(x)/p(x) rt(x)

𝔼Q [log
rt(x)
p(x) ] ≤ 𝔼Q [log

q(x)
p(x) ] 0 ≤ 𝔼Q [log

q(x)
rt(x) ]



E versus P

In the E-world, we judge  
e-values by expectations: 

 
and 

 
(“e-power” or “growth rate”)

This is a theory of 
evidence

𝔼H0
[W]

𝔼H1
[log W]

In the P-world, we judge 
tests by probabilities:

 power

s.t.  
 

This is a theory  
of decision making

max
ϕ

PH1
(ϕ(X) = 1)

PH0
(ϕ(X) = 1) ≤ α

We are designing a complementary theory to (say) Neyman-Pearson. 
When you see an e-value or e-process, ask about its e-power or growth rate, 

not its power (a p-concept) — there is some loss in transforming one to other.



Simple null vs. Composite alternative

    versus  H0 : Xi ∼ P H1 : Xi ∼ {Qθ}θ∈Θ

WT = ∫Θ

T

∏
i=1

qθ(Xi)
p(Xi)

dπ(θ)

Mix (hedge your bets) with “prior” πOption 1:

Option 2:

WT =
T

∏
i=1

q ̂θi
(Xi)

p(Xi)

Plug-in a representative  in each round̂θi ≡ θi(X1, …, Xi−1)

Typically, ,  

which is the best possible “growth rate”, even without knowing .

lim
T→∞

𝔼Q*[log WT]/T = 𝔼Q* [log
q*(X)
p(X) ]

Q*



To summarize what was known

• For testing a point null  against point alternative , 
likelihood ratios are optimal per-round bets

• The optimal wealth is the likelihood ratio process.

• The optimal rate of growth (exponent) of the wealth is 
exactly the KL divergence or relative entropy of  to .

P Q

Q P

What about composite nulls?

Significant progress by Peter Grünwald and coauthors in two papers
(“Safe Testing” and “Universal Reverse Information Projection and 

Optimal E-statistics”). We complete the story.



The numeraire e-variable 
and reverse information projection

arXiv:2402.18810

Johannes 
Ruf

(LSE)

Martin 
Larsson
(CMU)



Our setting: Composite null vs. Simple alternative
• We have a composite null hypothesis  and a point 

alternative hypothesis .  The data is either drawn from some 
 in  (the null is true), or from  (the null is false).

• A valid bet is an “e-variable”, which is a  such that 
 for every . Think of  as being the multiplier 

of your wealth in each round of a multi-round game.

• Question: What is the optimal one-round bet ? Is it unique? 
Can we characterize/derive it?

• Answer: It is the likelihood ratio of  to a special element , 
which we call the Reverse Information Projection (RIPr).

𝒫
Q

P 𝒫 Q

X ≥ 0
𝔼P[X] ≤ 1 P ∈ 𝒫 X

X*

Q P*

Our work tells a complete story about .(X*, P*)



Our setting: rephrased

A Forecaster claims that  describes the world well, 
meaning that outcomes/events are well described by some .

𝒫
P ∈ 𝒫

A Skeptic thinks that Forecaster is inaccurate, 
and believes that  is a better model for the world.Q

Forecaster offers bets based on his forecasts. A valid bet 
is an e-variable, which is a random variable  

such that  for every .
X : Ω → ℝ+

0
𝔼P[X] ≤ 1 P ∈ 𝒫

 is a set of possible outcomesΩ

After Skeptic picks a particular bet , we observe the outcome . 
Skeptic’s realized payout is . 

X ω
X(ω)

Which bet should the skeptic pick?

A: The log-optimal bet  is the likelihood ratio of  to the RIPr .X* Q P*



Introducing , the “numeraire” e-variableX*

Theorem: Under no assumptions on null  and alternative , 
there always exists a special e-variable (bet)  which satisfies 
two properties:

A. First,  and  (the e-variable 
or fair bet property)

B. Second, for any e-variable , we have  (the 
“numeraire property”)

Further,  is unique up to -nullsets. In fact,  is the numeraire 
if and only if it is log-optimal.

𝒫 Q
X*

X* ≥ 0 𝔼P[X*] ≤ 1, ∀P ∈ 𝒫

X 𝔼Q[X/X*] ≤ 1

X* Q X*

Applying Jensen’s inequality, we get two other interpretable 
implications: for any e-variable , we have  
and  (log-optimality!)

X 𝔼Q[X*/X] ≥ 1
𝔼Q[log(X/X*)] ≤ 0



Introducing , the reverse information projectionP*
Definition: Define a measure  by defining its likelihood ratio 
(Radon-Nikodym derivative) with respect to :

P*
Q

dP*/dQ := 1/X*

• This is understood to be zero on .
•  by definition. Also  by definition. 
•  is not a probability measure in general, it is a sub-probability 

measure, meaning that .

•  lies in the bipolar of , which is defined as follows.
A. The polar is , 

which is simply the set of all e-variables.
B. The bipolar is , 

which we also call “the effective null hypothesis”.

{X* = ∞}
P* ≪ Q X* = dQ/dP*
P*

∫ dP* ≤ 1

P* 𝒫
𝒫∘ := {X ≥ 0 : 𝔼P[X] ≤ 1 for all P ∈ 𝒫}

𝒫∘∘ := {P ≥ 0 : 𝔼P[X] ≤ 1 for all X ∈ 𝒫∘}



Notation

• We making the simplifying assumption in the rest of the talk that
, meaning that whenever  for every , 

we also have .  Very weak assumption!

• Recall that the KL divergence or relative entropy is defined as

 o.w.

• If  denotes the absolutely continuous part of  wrt , we 

can rewrite .

Q ≪ 𝒫 P(A) = 0 P ∈ 𝒫
Q(A) = 0

H(Q |P) := 𝔼Q [log
dQ
dP ]  if Q ≪ P, ∞

Pa P Q

H(Q |P) = 𝔼Q [−log
dPa

dQ ]



Strong duality of (X*, P*)
Theorem: Assume  for simplicity.  Let  be the numeraire 

and let  be an element of  that is equivalent to . 

The following statements are equivalent:
—  is the RIPr ;

—  for all ;

—  for all .

If any of these hold, then one has the strong duality:
,

where these quantities may equal .

Q ≪ 𝒫 X*
P* 𝒫∘∘ Q

P*

𝔼Q [ dPa

dP* ] ≤ 1 P ∈ 𝒫∘∘

𝔼Q [log
dPa

dP* ] ≤ 0 P ∈ 𝒫∘∘

𝔼Q[log X*] = sup
X∈𝒫∘

𝔼Q[log X] = inf
P∈𝒫∘∘

H(Q |P) = H(Q |P*)

+∞





Our theory recovers these
as a special case.



Our theory avoids all these assumptions



𝒫

Q 𝒫∘∘
P*

Let  denote the set of all probability measures. 
Let  denote the set of all nonnegative measure.

A set  is called “solid” if, for every , we also have 
 whenever .

If  is finite, then .

If a reference measure  exists for , then every  is also 
absolutely continuous wrt , and  is the smallest -closed solid 

convex set that contains . 

M1
M+

C ⊂ M+ P ∈ C
P′￼∈ C P′￼≤ P

𝒫 𝒫∘∘ ∩ M1 = conv(𝒫)

μ 𝒫 P ∈ 𝒫∘∘

μ 𝒫∘∘ μ
𝒫

H(Q |P*)

A bit more about the bipolar 𝒫∘∘



Recall that  by definition of . 

We say that  dominates  if  for all , with strict 
inequality for some .

X* =
dQ
dP*

P*

P P′￼ P(A) ≥ P′￼(A) A
A

A bit more about (X*, P*)

Theorem: Assume . Let  be an e-variable, and let  be 
defined by . Then  is the numeraire iff . 

In this case,  is -a.s. positive, and  is equivalent to .
Further,  is the only e-variable which can be written as the 
likelihood ratio of  to some element in . Finally,  is also 

maximal, meaning that it cannot be dominated by any other element 
of  that is absolutely continuous wrt .

Q ≪ 𝒫 X* P*
dP*/dQ = 1/X* X* P* ∈ 𝒫∘∘

X* Q P* Q
X*

Q 𝒫∘∘ P*

𝒫∘∘ Q



Let  denote the data, in this case real-valued.

Note that  has no dominating reference measure. 
Suppose  has a Lebesgue density .

Older theory does not apply in this case. But we can easily show
 is the RIPr density.

It is a probability density iff  has symmetric support. 

We can also show that  is the numeraire.

(In the paper, we generalize beyond  with Lebesgue density.)

Z
𝒫 := {P ∈ M1 : Z and  − Z have the same distribution under P}

𝒫
Q q

p*(z) =
q(z) + q(−z)

2
1{q(z) > 0}

Q

X* =
2q(Z)

q(Z) + q(−Z)

Q

Example 1: Symmetric distributions



Above condition implies that  for all . 
Let  for some known .

Once more,  has no reference measure. So older theory does 
not apply. 

But we can easily show that  is the numeraire 
and  is the RIPr.

𝒫 := {P ∈ M1 : 𝔼P[eλZ−λ2/2] ≤ 1 for all λ ≥ 0}

𝔼P[Z] ≤ 0 P ∈ 𝒫
Q = N(μ,1) μ > 0

𝒫

exp(μZ − μ2/2)
N(0,1)

Example 2: 1-Sub-Gaussian distributions



, where  and .

Let  be a centered Cauchy distribution. 

Note that 

Nevertheless, the RIPr is 
and the numeraire is .

In the paper we generalize this to  being any symmetric 
distribution (but note the much smaller null).

𝒫 := {P1, P2} P1 = N(−1,1) P2 = N(1,1)

Q

H(Q |Pi) = ∞ .

P* = (P1 + P2)/2
X* = 2q(Z)/(p1(Z) + p2(Z))

Q

Example 3: a parametric example from Lardy et al.



Consider an exponential family with density 
 for 

with respect to a reference measure , 
and  is convex and differentiable.  

pθ(z) = exp(θT(z) − A(θ)) θ ∈ Θ ⊂ ℝ
μ

A

Example 4: one-parameter exponential families

The null is given by ,
and we assume  is closed, with smallest element .

The alternative is  for some .

𝒫 := {pθ : θ ∈ Θ0 ⊂ Θ}
Θ0 θ*

pθ1
θ1 < θ*

We can show that  is the RIPr.  Thus the numeraire is 
the likelihood ratio .

Csiszar and Matus (2003) have an extensive study of the RIPr
for exponential families. 

pθ*
pθ1

/pθ*



Beyond logarithmic utility

Consider the optimization problem   

for a continuous, increasing, concave, differentiable, bounded .
For eg,  for .

sup
X∈𝒫∘

𝔼Q[U(X)]

U
U(x) = x1−γ /(1 − γ) γ > 1

We can show that a maximizer  exists and is unique.

Further, define  by  .

X*γ

P*γ ∈ 𝒫∘∘
(X*γ )−γ

𝔼Q[(X*γ )1−γ]
Define the Renyi divergence of order  as

.

1/γ

D1/γ(Q |P) :=
1

1/γ − 1
log 𝔼Q [( dPa

dQ )
1−1/γ

]
Theorem:  and  attain the extrema in the strong duality:

 

X*γ P*γ

sup
X∈𝒫∘

𝔼Q[U(X)] =
1

1 − γ
exp ((γ−1 − 1) inf

P∈𝒫∘∘
D1/γ(Q |P))

γ



Summary

We have fully generalized Kelly betting to composite nulls and point 
alternatives, yielding a strong duality between .

We have defined the reverse information projection  (RIPr) and 
the the optimal e-variable  (numeraire) without any assumptions.

We showed how to apply this theory to new nonparametric 
settings that were previously out of reach.

We showed how to generalize this story to general utilities that are 
continuous, increasing, concave, differentiable, bounded.

Next steps: more general utilities, composite alternatives, and 
sequential betting strategies (we have ideas for all of these),

EM? Covariate shift?

(X*, P*)

P*
X*
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Outline of this talk

1. Motivation for “safe anytime-valid inference (SAVI)” 
 
Testing by betting yields SAVI inference (parametric)

3. Core SAVI concepts 

4. Optimal gambling strategies 



Likelihood of alternative Pν

Likelihood of null Pθ

E-processes for composite null vs. composite alternative?

Mixture or plug-in (alt) likelihood
Maximum (null) Likelihood 

Maximum (alt) likelihood
Maximum (null) Likelihood 

Mixture (alt) likelihood
Mixture (null) Likelihood 

“Frequentist” Bayes Game-theoretic 
(wealth in a game)

Can use “prior” information to bet 
on the alternative. 

But evidence is compared to best null.

Only the last option is an e-process (the “universal inference” e-process).
It has the asymptotically optimal growth rate (Dixit-Martin’23).

Universal Inference (PNAS 2020) and Testing exchangeability (IJAR’22)



WT =
Mixture/Plug-in (alt) likelihood
Maximum (null) Likelihood 

=
T

∏
i=1

q ̂θi
(Xi)

p ̂θT
(Xi)
 is an e-process.

Dixit and Martin (2023, arXiv)

Also if the numerator is nonparametrically chosen smartly, then 
universal inference (above) is also asymptotically growth rate optimal! 

 
Under mild conditions, 𝔼[log WT]/T → K(Q*, 𝒫)

(Continued: “universal inference”)

As an e-value, it is always worse than the numeraire, 
but the numeraire is an e-value, while universal inference is an e-process. 

 
Open problem: determine when the sequence of numeraires (at 

increasing sample sizes) does or does not yield an e-process.



Summary

Testing by betting is a simple framework for hypothesis testing that 
yields sequential, anytime-valid inference.

Optimal gambling strategies are based on likelihood ratios. 
Composite alternatives are handled using mixtures (hedging).

Composite nulls are handled using reverse information projections,
or via universal inference (maximum-likelihood under the null).

(Composite) Nonnegative (super)martingales are secretly likelihood 
ratios, even when no reference measure exists.

E-processes exist more generally, even when nonnegative 
supermartingales do not exist. They are central objects: necessary 

and sufficient for sequential testing.


