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Outline of this lecture series

@ Yesterday: game-theoretic testing

2. Now: game-theoretic estimation

3. Today afternoon: game-theoretic change detection



Quick recap of game-theoretic testing
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Core idea: Testing by betting

In order to test a hypothesis, one sets up a game such that:
i the null Is true, no strategy can systematically make (toy) money,
but If the null Is false, then a good betting strategy can make money.

Wealth in the game Is directly a measure of evidence against the null.

Each strategy of the statistician = a different estimator or test statistic.
So there are "good” and “bad” strategies for betting,
just as there are good and bad estimators or test statistics.

Testing and estimation == game and strategy design.



A p-process (or anytime-valid p-value) for a null
H,: P € & is a sequence (p,),~ that satisfies

For any stopping time 7, P € & : P(p, < a) L «.

Johari et al. (2015, 2021),

Howard, Ramdas, et al. (2018, 2021)

An e-value for H,, is a [0,00]-valued r.v. e s.t.
VP € &P, Ep(e) < 1. (e for evidence or expectation)

An e-process for H, is a sequence of e-values (¢,);>

sup sup Ep(e,) < 1.
T PeEP
Eg: nonnegative martingales, supermartingales and more.

Howard, Ramdas, et al. (2018-2021)

Grunwald et al. (2019-2021)
Shafer (2020),Vovk & Wang (2021)




Summary

Testing by betting I1s a simple framework for hypothesis testing that
yields sequential, anytime-valid inference.

Optimal gambling strategies are based on likelihood ratios.
Composite alternatives are handled using mixtures (hedging).
Composite nulls are handled using reverse information projections,
or via universal inference (maximume-likelihood under the null).

(Composite) Nonnegative (super)martingales are secretly likelihood
ratios, even when no reference measure exists.

E-processes exist more generally, even when nonnegative
supermartingales do not exist. They are central objects: necessary
and sufficient for sequential testing.



So what about estimation?



A nontrivial

nonparametric
example

Estimating means of bounded

random variables by betting
(J Royal Stat Society B, 2023, discussion paper)

lan VWaudby-
Smith



Se |ng | Note: rich nonparametric set of distributions
o without a reference measure (hence no likelihood ratios)
Let X, X,, ..., be independent rv. € [0,1], with mean pu.

Q. How can we construct a confidence interval for p!

| [os2ia)
Al. Hoeffding: | X, > N [0,1]
n

— 267%1og(4/ 7 log(4/
A2. Empirical Bernstein: | X, £ o log(#/a) + og4/a)
n 3(n—1)

_|_

A3: Betting — significantly tighter!

Q2. How can we construct a confidence sequence for u!



A “confidence sequence (CS)” for a parameter 6
is a sequence of confidence intervals (L, U )

that are constructed from the first n samples, and
have a uniform (simultaneous) coverage guarantee.

P(Ve>1:0€(L,U)) >1-a.
For any stoppingtme z: P(O0 &€ (L, U,)) < a.

(Another motivation: (L,, U,) should not

contradict (L,,, U,) for any m > n. Darling, Robbins '67,"70s
With pointwise Cls, intersection = @ a.s., Lai /6,84
.P . . 2 Robbins, Siegmund /0s
but with CSs, intersection = 6 w.p. 1 — a)

Much stronger than the pointwise (fixed-sample)
confidence interval (Cl) guarantee:

V> 1,P@Oe L, U)>1-a.



P(Vn2>21:0€(L,U)) >1—-a.
Equivalent definitions:

P(dneN:0& (L,U)) <a.
Pl J0g @, uph<a.

neN

More generally:
P(Vh>ny:0,€C)>1—a.
P(Ine2V:0 ¢ (L,U)) < a.




P Joe @, U)h<a.
neN

Some implications:
| .Valid inference at arbitrary stopping times:

For any stopping time 7 : P(0 & (L, U))) < a.
2.Valid post-hoc inference (in hindsight):
For any random time T : P(@ & (L., U;)) < a.

3. No pre-specified sample size:
can extend or stop experiments adaptively.

Fact: the aforementioned properties Imply each other.



Converting the problem to a game

Initial capital Kém) = | for every (game) m € [0,1].

Foreacht =1,2,...

For each m € [0,1], statistician declares “'bet” ﬂt(m) e [—; i]

1—m’m

Realrty reveals X,
Statistician's wealth in game m becomes Kt(m) = Kt(i") (1 + ﬂt(m)(Xt —m))

C,:={me01]: K" < 1/a}

(the games in which the statistician did not earn enough wealth)

Theorem: For any betting strategy, (C,),»; Is a confidence sequence
for the true mean u.

Two guestions:Why is C, a valid confidence set?
How do we bet so that it I1s an efficient (small) set?




Time-uniform confidence sequences
X; ~ Beta(10, 30)

o 1.00 1.00
& \ —-— PM-H [Prop 1]
£.0.75 _075{\  --= PMEB[Thm2]
3 5 A\Y —— Hedged [Thm 3]
@ 0.50 £ 0.50
8 wn
T 0.25 ©0.251
G
g b —
[S) ———
- : : : -] @000 /(> o004 _____
0.00 0.25 0.50 0.75 1.00 10' 102  10®  10*  10° 10' 102 103  10*  10°
time t time t

Fixed-time confidence intervals
X; ~ Beta(10, 30)
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|.For each m € [0,1], let us test H(gm) CEplX | X, .. X ] =m

K™ =TT+ A", = m)), where A € [=1/(1 = m),1/m),

i<t - . -
predictable

2.C :={m: Kt(m) < 1/a} yields a confidence sequence for u.

sup P(dreN:ug(C) L<a.
PeH



|.For each m € [0,1], let us test Hém) CEplX | X, .. X ] =m

K™ =TT+ A", — m)), where A € [=1/(1 = m),1/m),

1<t

K'* is a nonnegative martingale with initial value one
(“test martingale™).

Ville's inequality sup P(dr € N : Kt(”) > 1/la) L a.

Pe o+

C, is incorrect only if Kt(”) exceeds 1/a. But this is happens w.p. < a.

2.C :={m: Kt(m) < l/a} is a confidence sequence for p.

sup P(dreN:ugC) <a.
PeyrH



But, how should we bet! (Option |: GRAPA)

Growth Rate Adaptive to the Particular Alternative

A(P) :=arg max [Ep[log(l +AX,—m)) | F,_,].
A€[-1,1]

But we don't know P. Approximate solution:
differentiate wrt 4, and set equal to zero (KKT),
Taylor expand, and plug-in empirical estimates.

(ji, and &% use the first £ — 1 samples)



X; ~ Bernoulli(1/2)
2.0

X;~ Beta(l1, 1)

t

2asos

-2.0

~2.0 Lrr———r
10! 102
t

S100 10
t

10°

— m=0.3 — m=0.45 — m=0.5

— m=0.55 — m=0.7

Figure 7: X295 for various values of m under two distributions: Bernoulli(1/2) and Beta(1, 1). The
dotted lines show the ‘oracle’ bets, meaning \35©5

with estimates of the mean and variance replaced
by their true values. As time passes, bets stabilize and approach their oracle quantities.
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Figure 8: Comparison of the wealth process under various game-theoretic betting strategies with 100
repeats. In this example, the 1000 observations are drawn from a Beta(10, 10) distribution, and the
candidate means m being tested are 0.5, 0.51, and 0.55 (from left to right). Notice that these strategies
perform similarly, but have varying computational costs (see Table 2).



X;~ Beta(1, 1)
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Shekhar + Ramdas (2023, arXiv)




X; ~ Bernoulli(1/2)
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Games, capital processes are intrinsic to (many/most/all?)
testing problems

KW =TT+ 4 - w)

1<t

Kt(”) s a test martingale

if and only if
every X; has conditional mean .

Thus, the caprtal process being a nonnegative martingale
— which is the only property we used for validity —
s not just an implication of the problem statement,
it is actually logically equivalent to the problem statement.

This is not just true for the presented problem, but a slew of other
nonparametric problems like independence testing, heavy-tailed estimation,
etc.We can prove that SAVI inference MUST be based on capital processes.

Ramdas, Ruf, Larsson, Koolen

(arXiv:2009.03167)



A multi-round game against an adaptive, constrained adversary

Adversary first picks u € [0,1].
At each time t

|. Statistician discloses bets for every m, depending on past.

2.Adversary then picks a distribution Q¥ € @", which could

also depend on the past, and on the bets.

3. Nature verifies that rules are being followed, draws X, ~ Q,
and presents It to the statistician.

S is a “‘closed, fork-convex” set. Sequential analog of convexity.



Setting 2
Xy, - - -, Xy are fixed non-random numbers in [0,1].
th {Xl’ .o "Xf—l} ~ Uﬂlf[{xl, .o ,XN}\{Xl, .o "Xt—l}] .
N
Q. How can we construct a confidence interval for p = Z xX;,/N?
i=1

_ [log2la)
Al Hoeffding | X +\/ 0g(2/a)

n— M See the paper
- . for details

A2. Serfling (197/0s), Bardenet-Maillard (2014), etc.

A3: Betting — significantly tighter!

Q2. How can we construct a confidence sequence for u!



Time-uniform, nonparametric,
nonasymptotic confidence sequences

+ “Time-uniform Chernoff bounds”

_____
.....

Steve | | Jon
Howard Sekhon McAuliffe

(AoS2 1, Probability Surveys20)



Moment
Condrtions
Assumption |
“stronger”

Zar IR

Hoeffding | Bernstein | Bennett | Freedman | de la Pena | Bercu-
Hoeffding | Bernstein [ Bennett | Freedman | de la Pena_

. . N Touat
Matrix- Matrix- | Matrix- | Matrix- Matrix-
Hoeffding | Bernstein | Bennett | Freedman | de la Pena

“weaker”




“stronger’?
(A) Assumptions
(B) Boundary
(C) Continuous
(D) Dimension

(E) Exponent



Existing result  Our result [A] [B] [C] [D] [E]
Bernstein (1927) Corollary 1(c) v o v v
Bennett (1962, eq. (8b)) Corollary 1(b) v v v v
Hoeffding (1963, Theorem 2) Corollary 1(a) v oV v
Freedman (1975, Theorem 1.6) Corollary 1(b) v v Vv
Shorack and Wellner (1986, App. B, Ineq. 1) Corollary 11(b) v
Pinelis (1994, Theorems 3.4, 3.5) Corollary 10 v
van de Geer (1995, Lemma 2.2) Corollary 11(c) v v
Blackwell (1997, Theorem 1) Corollary 4(a) v v oV
Blackwell (1997, Theorem 2) Corollary 5 v
Blackwell (1997, Theorem 2) Corollary 4(b) v v ooV
de la Pena (1999, Theorems 1.2B, 6.1) Corollary 6 v v Vv
de la Pena (1999, Theorem 6.2) Corollary 7 v v Vv
Bercu and Touati (2008, Theorem 2.1)  Corollary 8 v v oV
Delyon (2009, Theorem 4) Corollary 8 v v
Khan (2009, Theorem 4.2) Theorem 1(b) v ooV Vv
Khan (2009, Theorem 4.3) Theorem 1(d) v v v
Tropp (2011, Theorem 1.2)  Corollary 1(b) v
Tropp (2012, Theorem 1.3) Corollary 1(a) v v
Tropp (2012, Theorem 1.4) Corollary 1(c) v
Mackey et al. (2014, Corollary 4.2) Corollary 1(a) v oV




. Moment . "

Assumption |

Given a “sum process” (3,), assume that we can find
a "variance process” (V) and a function y(4) such that

slightly simplified

exp(4S, — w(4)V) is upper bounded by a test
supermartingale for any 4 € [0,4

max)'

“Sub-y supermartingale or e-process”

Often, y(4) is a CGF (log-MGF), w(1) =~ A?/2 as 1 — 0.



Example: subGaussian observations

Define M, := Hexp(}tXi— %20'1.2).
i=1

fE[X;| F;_;] £0and X, is 6-subGaussian,
then M, is an NSM for 4 > 0.

Robbins et al. 1960s//0s



Example: observations bounded on one side

Denote S, : Z X,V = Z X2

Define M, := exp(/iS — ( log(l — /1) MV,

= H exp(AX; — y(H)X?)
=1

then M is an NSM for 4 € [0,1].

Fan et al. (2015)



0 VS V) < L, s, V1

Y*(u) == sup[Au — ¥(A)] (the Legendre-Fenchel transform),
AER

(Y™ (u))

"= )

(the “slope” transform).

Suppose (Sy), (V,), and () satisfy Assumption 1,
where 1) is strictly convex and twice continuously differentiable
with ¥ (0) = ¢’(0) = 0 and sup, ¥’ (\) = oc.

Then for any x,m > 0, we have

P(3n2115n233+5(£
m




Eg: Suppose | X,| < band E,_1X,, =0 for all n,
and let V,, = > ", Var;_1 X;.

(Vi bx
(Bennett '62) P(Sy, > ) < exp — 5 (V—m>}

\\

h(u) = (1+u)log(l +u) —u.

(Freedman ’75) P(3n>1:5, >z and V,, <m) < eXp{_Zgh (:)}

are special cases of

P(anz1:8 205 () -m) < @ oo {130 (2)]

m m

slu) = % (log(lbl—bl— ) 1)



Eg: (bounded max-eigenvalue)
Suppose WmaX(Xn) < b, recall Vi, == Ymax(D ., Var;_1 X;)

P(Hn >1:8, zx+5(£) (Va —m)) < dexp{_b%h (%)}

m

= dex {_ 2(m fbx/i%) }

strengthens Tropp’s matrix-Freedman/Bernstein



Eg: (matrix sub-Gaussian)

2 2
Suppose E,_1e?n < eron/?

_ N _ ,
P(HnZl:SnZaﬁL% Ymax (;(722) —m ) §dexp{—2x—m}

strengthens matrix-Hoeffding in Tropp (2012),
Wainwright (2018), Ahlswede-Winter (2002), etc.



Suppose V,, = n
Exceedence probability a = exp{—my*(xz/m)}.

Bound i
on Sp Slope s(x/m)
. . Chernoff
r—m-s(x/m) :
>
0 m n

P(dn>1:5,>x+ (n—m)- -s(z/m)) <«
P(dn>1:5,>xand n <m) <«
Chernoff  P(S,, > z) < «



Bound

Theorem |
on S,
FI’EEdman ______________ e @ o
€T
>
0 . >

Underlying every Chernoff bound is a uniform bound.

Our uniform bound is tangent to the pointwise curve.



Method exp(4S,(0) — w(A)V,)

New mixtures in nonparametric settings

Mix over A using dG(A)

Ville's

FJEEEEEEEEEEEEENEEEEEEEEEEEEEEEENEEEEZ mixtur‘e SupermartingaJe

J exp(4S,(0) — y()V,)dG(A)
A

optimize A ala

Chernoff-trick |
Ville's

“line-crossing” inequality “curve-crossing” Inequalrty

\/tlogt ory/tloglogt growth

Wald, Darling, Robbins, Siegmund, Lai, de la Pena, Howard et al.



Choose any constant n > 1
and any increasing function A Eg: h(k) oc (k4 1)°
such that >, ,1/h(k) = 1.

Bound |

on S,

Theorem 2

___
—
—

“Stitching”

Eg: X; is 1-subGaussian 0-mean. Take s = 1.4, n = 2:

5.19
P (Eln >1:5,> 1.71\/n (loglog(Zn) + 0.72 log —)) < a.
o



A comparison for the (sub)Gaussian case

2,000 - _— Jamieson et al. (2013)

/Balsubramani (2014)

~_~Zhao et al. (2016)

Darling & Robbins (1967b)

Kaufmann et al. (2014)

Normal mixture

Darling & Robbins (1968)*

Polynomial stitching (ours)
____________ Inverted stitching (ours) »

.......... Discrete mixture (ours)
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* numerical



Application: testing if a coin is biased (or
estimating its bias) by repeatedly tossing it

Choose any constant n > 1
and any increasing function h

such that > -, 1/h(k) = 1.

Then a confidence sequence for the bias is:




Confidence sequence for fixed quantiles

\/0.73 loglog(2.04%) + 0.52102(9.97 /)
Define u, := t

Then Pr(VteN: O (1/2—-u) <0(1/2)< O ,(1/2+u) >1—-a.

Confidence sequence for all quantiles simultaneously

\/ loglog(et) + 0.7510g(34/)
Define u, := t

Pr(VieN,pe©,1): O,(p-u)<0p) < Q(p+u)>1-a.



Confidence bounds for 90%ile

Cauchy distribution
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Second coordinate

Application: sequential covariance matrix estimation

Consider X € R4, EX = 0, | X | <b.

uniformly w.h.p.

- | | blog(dl
||En—2||opf,\/b og(d ogn)_l_ og(dlogn)

n n
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Confidence set Confidence set Confidence set
% &
: z
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s N
True X True = True =

First coordinate First coordinate First coordinate



Sequential Probability
Ratio Test (SPRT)

(nonparametric)

our
bounds

(uniform) (nonasymptotic)

Cramer-Chernoff Law of the Ilterated

inequalities Logarithm (LIL)



Game-theoretic methods are very practical

|. Election auditing: the state-of-the-art post-election audits
are now based on betting for sampling without replacement.

2. A/B testing: our A/B tests are being used by Amazon,
Netflix in public-facing software.

3. On and off-policy evaluation: our confidence sequences
are deployed at Adobe, Microsoft in public-facing software.



