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Outline of this lecture series

1. Yesterday: game-theoretic testing

2. Today morning: game-theoretic estimation

3. Now: game-theoretic change detection



Super high-level problem setup

You observe data (scalars or vectors or objects) one at a time. 

You calculate some statistic of the data as you go along. 
(“CUSUM”, “SR”)
 
When the statistic crosses a threshold, you proclaim a change.
 
Aim: Minimize detection delay while controlling false alarms.



Average run length (ARL) or Frequency of False Alarms:  
this is the analog of “Type-I error” from testing  

Definition:  When there is no change point, 
the ARL is the expected number of steps before we  

(falsely) proclaim a change point. 

Eg: maybe we are ok with a false alarm roughly every 1000 steps.

Metrics of success

Detection delay (DD): analog of “Type-II error”  

Definition:  When there is a change point at some time , 
DD is the expected number of steps after  that we need 

to (correctly) proclaim a change point.

ν
ν



Controlling the ARL is very hard! 
 

If the pre-change distribution is perfectly known, 
then controlling ARL is easy: set threshold via offline simulation, 
or use analytical calculations (asymptotics) to find threshold. 

Cannot do this if the pre-change data is only known to lie  
in some set of distributions 

i.e. we only know some partial aspects of pre-change distribution, 
(Eg: we know variance , but not sure what the exact value is)

 
If we do not know how to model some aspects of the pre-change 

distribution (i.e. “nonparametric”) 
(Eg: we know the data is bounded, but we don’t know much else) 

In such cases, it is much harder to control the ARL. 
Simulation and math both don’t easily work.

< 10

Critical issue in practice



Using “E-detectors”
(NEJSDS’23)

Via “confidence sequences”
(arXiv)

When pre- and post-change distributions  
are known to lie in separate classes  

(eg: mean change from  to )
𝒫, 𝒬

< 0 > 0

When pre- and post-change distributions  
are unknown but from the same class 
(eg: the mean changed from  to )a b

Two recent reductionist works

Key idea: reduce change detection to 
repeated sequential testing of  vs. 𝒫 𝒬

Key idea: reduce change detection 
to repeated sequential estimation

Method: at every time ,  
start a new level-  sequential test  

based on  and declare change  
when accumulated evidence crosses 

t
α

Xt, Xt+1, …
1/α

Method: at every time ,  
start a new level-  confidence sequence  
based on  and declare change  

when their intersection is empty.

t
α

Xt, Xt+1, …

Main theorem: ARL ≥ 1/α Main theorem: ARL ≥ 1/α

Advantage: sequential testing/estimation are basic problems, increasingly well studied.

Main theorem2: “Optimal” detection delays Main theorem2: “Optimal” detection delays



Today’s talk

1. Reducing partitioned change detection to sequential testing

2. Reducing non-partitioned change detection to sequential estimation

3. High level summary of game-theoretic statistics
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TLDR: Reducing sequential (nonparametric) change 
detection to (modern) sequential testing

E-detectors



Recap: Lorden’s reduction to testing (1970)

TLDR of our paper: more sophisticated reduction to sequential testing. 
Idea: accumulate the evidence across tests.

Lorden’s Reduction: at every time , start a new level  sequential test 
based on  (so there are  tests running after  steps).  

We declare a change when any of them rejects the null.

t α
Xt, Xt+1, … t t

What is a “one-sided” level-  sequential test of  vs.  ?
 vs. 

For each  after seeing  we output 0 or 1. 
0 means “not enough evidence to reject , collect more data”. 

1 means “we have enough evidence to reject ”.
 

A level-  sequential test  satisfies  
.

α 𝒫 𝒬
H0 : X1, X2, … ∼ P ∈ 𝒫 H1 : X1, X2, … ∼ Q ∈ 𝒬

t ≥ 1, Xt
𝒫

𝒫

α ϕ
P(∃t ∈ ℕ : ϕ(X1, …, Xt) = 1) ≤ α for all P ∈ 𝒫

Key theorem:  This method controls ARL (FFA) at level .1/α



Quantifying evidence using e-processes
Consider sequential testing H0 : P ∈ 𝒫

An e-process for  is a nonnegative process 𝒫 Λ ≡ (Λn)n≥1

such that  for all .𝔼P[Λτ] ≤ 1 P ∈ 𝒫, τ ∈ 𝒯

E-processes are nonparametric, composite generalizations of  
likelihood ratios and have a nice game-theoretic foundation.

Define the SR e-detector as ,  

where  is a -e-process started at time .

MSR
n :=

n

∑
j=1

Λ( j)
n

Λ( j) 𝒫 j

Vovk, Shafer, Grunwald, R, 
Wang, Larsson, Koolen, Ruf, Howard, etc. (last 5 years)

We reject the null whenever the “evidence”  exceeds .Λt 1/α



E-detector

An e-detector for  is a nonnegative process 𝒫 M ≡ (Mn)n≥1

such that  for all .𝔼P[Mτ] ≤ 𝔼P[τ] P ∈ 𝒫, τ ∈ 𝒯

: filtration, and  need not be .ℱ ≡ (ℱn)n≥1 ℱn σ(X1, …, Xn)

: set of all stopping times with respect to  𝒯 ℱ

 : pre-change set of distributions over infinite sequence𝒫

Nonasymptotic ARL control

Define stopping time N*1/α := inf{t ≥ 1 : Mt ≥ 1/α} .

Theorem: If  is an e-detector for , then 
the ARL is    

M 𝒫
𝔼P[N*1/α] ≥ 1/α ∀P ∈ 𝒫



Computationally efficient e-detectors using  
“baseline” e-processes

Often, our e-process can be written as   

where  
 

Then,  can be computed online,
like the Shiryaev-Roberts procedure.

Λ( j)
n :=

n

∏
i=j

Li

𝔼P[Ln |ℱn−1] ≤ 1 for all P ∈ 𝒫 .

MSR
n := Ln(MSR

n−1 + 1)

Example: likelihood ratios, if  is a point null, but also any 
setting with a nonnegative supermartingale for composite .

𝒫 = {P}
𝒫



Cleveland Cavaliers (NBA, 2011-18)

Is there a changepoint from a negative to a positive plus-minus?

E-detector: a nonparametric framework to answer such questions.

The paper: related work (Lorden, Pollak, Siegmund, Tartakovsky, 
Veeravalli, Xie, Harchaoui, and many others)

Plus-minus = Points scored - Points conceded



Why is it hard?

Challenges: the plus-minus stat of a game is a  
bounded r.v. between [-100, +100] (let’s rescale to [0,1]) 
and its mean varies over time (with form, injuries, etc), 

and we know nothing else about the distribution.

 for some  
where 

X1, X2, … ∼ P P ∈ 𝒫
𝒫 := {P on [0,1]∞ : 𝔼[Xn |past] ≤ 1/2 for all n ≥ 1}

If there is a change at time , then  
where 

ν Xν, Xν+1, … ∼ Q for some Q ∈ 𝒬
𝒬 := {Q on [0,1]∞ : 𝔼[Xn |past] > 1/2 for all n ≥ 1}

Here  are distributions on infinite sequences of observations, 
so the data are not iid (neither i nor id),  

and are only restricted by their conditional means

P, Q



Method

 for some  
where 

X1, X2, … ∼ P P ∈ 𝒫
𝒫 := {P on [0,1]∞ : 𝔼[Xn |past] ≤ 1/2 for all n ≥ 1}

If there is a change at time , then  
where 

ν Xν, Xν+1, … ∼ Q for some Q ∈ 𝒬
𝒬 := {Q on [0,1]∞ : 𝔼[Xn |past] > 1/2 for all n ≥ 1}

Fix  for now: we have seen that we can mix over , or plug-in.

For a fixed , recall the previous two lectures:

 

Is the optimal supermartingale. So plug this into the e-detector.

Q Q

Q
t

∏
i=1

(1 + λ*Q(Xt − 1/2))



Result

Our e-detector announces a change point during the 2014-15 season. 
It controls the average run length (ARL) at  = 1000, 

which is more than twelve seasons of games.
1/α

log(1/α)



More broadly: the e-detector can help detect changes when 
the pre-change and post-change distributions 

are composite, non-stationary and nonparametrically specified 
(eg: no common reference measure, no likelihoods,  

infinite dimensional nuisance parameters, etc.)

(Simulation, asymptotics are intractable for ARL.)



A short list of e-processes for other settings

• ANY  for which max-likelihood (after smoothing or profiling) 
is feasible (eg: shape constraints like monotone, log-concave)

𝒫

Wasserman, Balakrishnan, Ramdas’20 
Universal inference

• ,  unrestricted𝒫 = {P : X1, X2, … are exchangeable} 𝒬

Vovk’21 (Testing randomness online) 
Ramdas, Ruf, Larsson, Koolen’21  

(Testing exchangeability: fork-convex hulls, supermartingales and e-processes)

• , 𝒫 := {(P × P)∞ : for any P} 𝒬 := {(P × Q)∞ : for any P ≠ Q}

Shekhar, Ramdas’21 
(Nonparametric two-sample testing by betting)



Some more e-processes for other settings
•  𝒫 := {P∞ : 𝔼[X] ≤ μ, Var(P) ≤ σ2}

𝒬 := {P∞ : 𝔼[X] > μ, Var(P) ≤ σ2}
Wang, Ramdas’23 (Catoni-style CSs for heavy-tailed mean estimation)

•  𝒫 := {P∞ : 𝔼[X] ≤ μ, Var(P) ≤ σ2, adversary corrupts ϵ fraction of data}
𝒬 := {P∞ : 𝔼[X] > μ, Var(P) ≤ σ2, adversary corrupts ϵ fraction of data}

Wang, Ramdas’23 (Huber-robust confidence sequences)

• , 𝒫 := {P∞
XY : where PXY = PX × PY}

𝒬 := {P∞
XY : where PXY ≠ PX × PY}

Shekhar, Ramdas’23 and Podkopaev et al.’ 23 
(Nonparametric independence testing by betting)



Detection delay: suppose Q is known

If the baseline increment  is function of only  
and the post-change observations from  are strongly stationary, 

then , 

 
where .

Ln Xn
Q

𝒟(NSR) ≤
log(1/α)
𝔼Q log L1

+
𝔼Q log2 L1

(𝔼Q log L1)2
+ 1

NSR := inf{t ≥ 1 : MSR
t ≥ 1/α}

For a changepoint stopping rule , 
Define worst detection delay 

N

𝒟(N) := sup
ν≥0

𝔼P,ν,Q[(N − ν)+ |N > ν]



Mixtures of e-detectors

A convex combination (mixture) of e-detectors 
is also an e-detector.

This fact can be used to take statistically and computationally efficient 
mixtures over  (implicitly over ), 

in order to derive e-detectors that adapt to unknown .
Π 𝒬

Q

We derive e-detectors where the number of mixture components 
increases (logarithmically) with time.

Minimizing delay corresponds to maximizing , 
but we usually don’t know 

K := 𝔼Q log L1
Q .

Let  be a family of baseline processes indexed by  
 depends on .

(Lλ)λ∈Π λ .
λ* := arg max

λ∈Π
𝔼Q log Lλ

1 Q

(ARL control 
maintained)



Detection delay for the mixture e-SR procedure 

𝒟(NmSR) ≤
gα

D(Q∥𝒫)
+

𝕍Q[log Lλ*
1 ]

D2(Q∥𝒫)
+ 1

Defining  as the “signal strength”, lying in , 
 

we have 

Δ* = ∇ψ(λ*) [ΔL, ΔU]

gα ≤ inf
η>1

η [log(1/α) + log (1 + ⌈logη
ψ*(ΔU)
ψ*(ΔL) ⌉)]

Qualitatively similar results in the non-separated case.



Takeaway messages
A -e-detector is a nonnegative adapted process 𝒫 M ≡ (Mn)n≥1

such that  for all .𝔼P[Mτ] ≤ 𝔼P[τ] P ∈ 𝒫, τ ∈ 𝒯

A -e-process is a nonnegative adapted process 𝒫 Λ ≡ (Λn)n≥1
such that  for all .𝔼P[Λτ] ≤ 1 P ∈ 𝒫, τ ∈ 𝒯

Eg: the SR e-detector as ,  

where  is a -e-process started at time .

MSR
n :=

n

∑
j=1

Λ( j)
n

Λ( j) 𝒫 j

Thresholding at  controls ARL at . 
Mixtures of e-detectors are also e-detectors. 

Baseline e-processes (eg: exponential) enable online computation.

1/α 1/α

Now, we can perform changepoint detection in a slew of 
nonparametric settings, sometimes good bounds on detection delay.



Today’s talk

1. Reducing partitioned change detection to sequential testing

2. Reducing non-partitioned change detection to sequential estimation

3. High level summary of game-theoretic statistics



E-detectors (NEJSDS’23)

Confidence sequences arXiv’23

When pre- and post-change distributions are 
known to lie in separate classes 

(eg: mean change from  to )< 0 > 0

When pre- and post-change distributions are 
simply two different distributions in one class 

(eg: the mean changed from something to something else)



Shubhanshu
Shekhar 
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TLDR: Reducing sequential (nonparametric) change 
detection to (modern) sequential estimation

Via confidence sequences (arXiv)



Sequential Changepoint Detection
! Stream of independent X -valued observations: X1,X2, . . .

! For some T ∈ N ∪ {∞}:
! Xt ∼ P0 for t ≤ T
! Xt ∼ P1 #= P0 for t > T

! Mild requirements on the distributions:
! Both P0,P1 are unknown
! P0,P1 ∈ P for some known class of distributions P

! Decide between

H0 : T = ∞, versus H1 : T < ∞.

! Objective: Define a stopping time τ to declare a detection, that
! minimizes false alarms under H0
! has a small detection delay, (τ − T)+, under H1

3



A “confidence sequence (CS)” for a parameter 
is a sequence of confidence intervals  
that are constructed from the first  samples, and
have a uniform (simultaneous) coverage guarantee.

θ
(Ln, Un)

n

Darling, Robbins ’67, ‘70s
Lai ’76, ’84

Robbins, Siegmund ‘70s

Much stronger than the pointwise (fixed-sample) 
confidence interval (CI) guarantee:

∀n ≥ 1, ℙ(θ ∈ (L̃n, Ũn)) ≥ 1 − α .

Equivalently, for any stopping time τ : ℙ(θ ∈ (Lτ, Uτ)) ≥ 1 − α .

ℙ(∀n ≥ 1 : θ ∈ (Ln, Un)) ≥ 1 − α .

28



Overview of our results

8

If we can construct
a CS for θ ⇒ We can detect

changes in θ

! Scheme 1: Uses a single forward CS (FCS).
! strong false alarm control (PFA)
! weak guarantees on detection delay

! Scheme 2: Combines one FCS with a new backward CS (BCS) every
round.
! non-asymptotic guarantees over ARL
! tight control over the expected detection delay

! Addresses several classical and modern problems in a unified manner.

Our Reduction: at every time , start a new level-  confidence 
sequence based on  (there are  active CSs after  steps).  

We declare a change when their intersection is empty.

t α
Xt, Xt+1, … t t

Key theorem 1:  This method controls ARL (FFA) at level .1/α

Key theorem 2:  The detection delay is minimax optimal for many 
problems for which the confidence sequence shrinks like .Õ (1/ t)



Main Assumptions

7

! We work with distribution class P = {Pθ : θ ∈ Θ}.
! Possibly infinite dimensional Θ endowed with metric d.
! P0 = Pθ0 and P1 = Pθ1 for θ0, θ1 such that d(θ0, θ1) > 0.

Assumptions

1. Uniformly decaying width: We can construct a CS
{Ct(θ) : t ≥ 1} for all θ ∈ Θ, satisfying

sup
θ∈Θ

sup
θ′,θ′′∈Ct(θ)

d(θ′, θ′′) ≤ wt ≡ wt(Θ,α),

such that limt→∞ wt = 0.

2. Enough pre-change data: Under H1, the changepoint T is
large enough to ensure wT < ∆ := d(θ1, θ0).



Performance Guarantees

! Control over the ARL:

Under H0 : E [τ ] ≥ 1/2α− 3/2.

! Control over the detection delay under H1:

! Introduce the “good event”: E = {∀t ≤ T : θ0 ∈ Ct}

! If wt = O
(√

log log t/t
)

, then

E[(τ − T)+|E] = O
(
log log(1/∆)

∆2

)
where ∆ = d(θ0, θ1).

! Can generalize to arbitrary wt → 0 (next slide).

18



Detection Delay Analysis: general wt

19

wT

wt−T

θ0

θ1

(Θ, d)

For t just after T



Detection Delay Analysis: general wt

19

wT

wt−T

θ0

θ1

(Θ, d)

With increasing t, width
of BCS at T (i.e., wt−T)
around θ1 shrinks.



Detection Delay Analysis: general wt

19

wT

wt∗−T

θ0

θ1

(Θ, d)

At t∗:
wt∗−T + wT < d(θ1, θ0),
and the two balls
become disjoint.



Applications

20

! Mean-shift detection with univariate Gaussians.
! Pθ0 = N(θ0, 1), and Pθ1 = N(θ1, 1), with ∆ = |θ1 − θ0|.

! Mean-shift detection with bounded observations
! Pθ0 and Pθ1 , supported on [0, 1] with ∆ = |θ1 − θ0|.

! Changes in CDF
! ∆ = dKS(θ0, θ1), with θi = CDF of Pθi .

! Two-sample changepoint detection
! θ0 = P × P, θ1 = P × Q, and ∆ = MMD(P,Q).

! Several other tasks: distribution shifts in ML, nonparametric
regression, exponential family.



Using “E-detectors”
arXiv: 2203.03532 (under review)

Using  
“confidence sequences”

ICML 2023  
+ to-be-arXived

When pre- and post-change distributions  
are known to lie in separate classes  

(eg: mean change from  to )
𝒫, 𝒬

< 0 > 0

When pre- and post-change distributions  
are unknown but from the same class 
(eg: the mean changed from  to )a b

Summary

Key idea: reduce change detection to 
repeated sequential testing of  vs. 𝒫 𝒬

Key idea: reduce change detection 
to repeated sequential estimation

Method: at every time ,  
start a new level-  sequential test  

based on  and declare change  
when accumulated evidence crosses 

t
α

Xt, Xt+1, …
1/α

Method: at every time ,  
start a new level-  confidence sequence  
based on  and declare change  

when their intersection is empty.

t
α

Xt, Xt+1, …

Main theorem: ARL ≥ 1/α Main theorem: ARL ≥ 1/α

Advantage: sequential testing/estimation are basic problems, increasingly well studied.



Today’s talk

1. Reducing partitioned change detection to sequential testing

2. Reducing non-partitioned change detection to sequential estimation

3. High level summary of game-theoretic statistics



What is game-theoretic statistics?

A subfield whose quest is to quantify uncertainty in  
statistical inference tasks like  
 — hypothesis testing  
 — estimation (confidence sets) 
 — probabilistic forecasting  
 — model selection  
 — change detection 
by using game-theoretic intuition, language and formalism. 

Helps design new nonparametric inference procedures which 
• Have strong theoretical guarantees under weaker assumptions, 
• Provide greater flexibility in applications, 
• Combine the use of prior knowledge with frequentist guarantees, 
• Are designed to be adaptive to the underlying data.



P-processes

E-processes

Confidence sequences

Power-one
Sequential tests

The 4 characters in SAVI

“calibration” (running supremum)−1

Threshold at 1/α

Threshold at α
“invert” 
a familyintersection

Dual

The central object. 
Understanding their properties and  

designing “good” ones has 
been the focus of all my research 

for many years.

Real-valued measures of evidence Associated with a level α ∈ (0,1)



Ramdas, Ruf, Larsson, Koolen 
(arXiv:2009.03167)

If  is a test martingale for , then for every , we can write 

 for some  — it is a “simultaneous likelihood 

ratio”, despite there being no dominating reference measure for .

(Mt) 𝒫 P ∈ 𝒫

Mt =
Q(X1, …, Xt)
P(X1, …, Xt)

Q

𝒫

E-processes are nonparametric, composite generalizations of 
likelihood ratios

Every likelihood ratio is a test martingale. 
Further, every test martingale is (implicitly) a likelihood ratio.

Test martingales are at the heart of parametric inference,
(likelihood ratio) — but also nonparametric inference. 
 
E-processes generalize test martingales: they exist more generally. 



Nontrivial (e-power) test martingales exist

Two-sample testing*
Bounded means*

Exchangeability* (in shrunk filtration)
Independence testing* (in shrunk filtration)

T-test (in shrunk filtration)

* : no dominating reference measure  
for the set of distributions

Testing symmetry*



Nontrivial test supermartingales exist
SubGaussian distributions* (or any bounded MGF)
Robust, heavy-tailed mean estimation*

Nontrivial test martingales exist

Two-sample testing*
Bounded means*

Exchangeability* (in shrunk filtration)
Independence testing* (in shrunk filtration)

T-test (in shrunk filtration)

Testing symmetry*



Nontrivial e-processes exist
Any composite  : “universal inference”𝒫
Exchangeability* (in original filtration)
T-test (in original filtration)

Nontrivial test supermartingales exist
SubGaussian distributions* (or any bounded MGF)
Robust, heavy-tailed mean estimation*

Nontrivial test martingales exist
Testing symmetry*
Two-sample testing*
Bounded means*

Exchangeability* (in shrunk filtration)
Independence testing* (in shrunk filtration)

T-test (in shrunk filtration)



Some current and future directions

1. For a new (nonparametric) problem, how do we design the  
game and learn to bet?) 

2. When do nontrivial test martingales (not) exist?  
When do nontrivial test supermartingales (not) exist? 
When do nontrivial e-processes (not) exist? 

3. How do we move beyond this tutorial’s topics to, say, 
game-theoretic model selection? 

4. Everything today was nonasymptotic. What about  
anytime-valid asymptotics? (Few arXiv preprints) 

5. How do we tie together game-theoretic statistics with  
game-theoretic probability?  
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