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Statistical modeling of sequences

+! GPT-4

. What is a generative sequence model? Are you one?

®

A generative sequence model is a type of statistical model that is designed to generate
sequential data that follows an underlying pattern or distribution. It can learn from existing
data and generate new data that's statistically similar to what it's been trained on. Examples

of sequential data include sentences, time-series data, music, DNA sequences, and more.

There are several ways to implement generative sequence models, including methods like
Hidden Markov Models (HMMs), Recurrent Neural Networks (RNNs), Long Short-Term

Memory Networks (LSTMs), Transformers, and variations of these.

As for your second question, yes, | am an example of a generative sequence model.
Specifically, I'm based on the GPT-4

Large language models

Robotics and decision making




Computational cost?
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“data requirements growing very slowly as D ~ C%27 with compute”

User: What is 8493 + 23577 User: What is 84935834 + 23572898?
GPT-3.5: 10850 v GPT-3.5: 108008732 X
GPT-4: 10850 V/ GPT-4: 108508732 v/

User: What is 9991999919909993 + 6109199190990097?
GPT-3.5: 16111199190810090 X
GPT-4: 16101199100890090 X
Answer: 16101199110900090

Sequence modeling is computationally hard particularly for algorithmic/combinatorial problems

Can we circumventthese barriers?
What are the algorithmic principles for doing so?




Computational barriers in sequence modeling

Learning parity (with noise)
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Vignette #1: learning parity (with noise)

[ﬂ] _D A U , Planted subset S c [n] of size k

—_— ———

Samples (x,y) € {—1,1}" x {—1,1}
ﬂ U U U + x ~ Unif({—1,1}")
1 1T A& * ¥y = lliesx;
Find classifier h: {—1,1}" - {—1,1} minimizing

: ﬂ : H H U 0l Pr[h(x) #y]

Noisy version: y = Il;cg X; With prob 3/4




Parity: theoretical results L

Statistical complexity: ©(k log n) for k-sparse parity
(1) hypothesis, all wrong ones have error rate %

Parity functions are orthogonal: E[ xs(x)xt(x)] = 1{T =S}

Computational complexity:

* Noiseless parity: poly(n) time via Gaussian elimination 1 0 1 1

» Noisy case: try all (1) ~ n¥ hypotheses <(1) (1) (1) 0> | (
* Q(n¥) time via statistical queries

» Noisy parity: conjectured n*® for all algorithms



Experiments with parity
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Accuracy curves shift left with more samples => comp-stat tradeoff



Experiments with parity
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Barak et al. Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit. 2023.

Abbe et al. Provably advantage of curriculum learning on parity targets with mixed inputs. 2023.

Problem gets much
harder as k
iIncreases



Interactive learning for sparse parity

SR R

Pick arbitrary x, get label y
For eachi € [n]: query x' = (x4, ..., 1 — Xy, ..., X,,) get label y!

O(n) queries/samples and O(n) time
« Works with noise
» Works for any sparsity

[“interactive learning” bypasses computational hardness for parityJ




Vignette #2:
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Deterministic finite automata

)

Deterministic Finite Automata:

 Finite state space Q, start state q,, goal q*
 Finite input alphabet £

e Transitionoperator T:Q X X - Q

Learning problem: unknown DFA with n states
Samples (x,y) € 2T x {0,1}

« x ~ Unif(Zh)

* v =1{qr(®) = q*}, where q¢(x) = T(q¢-1 (%), X¢)

Find classifier h: =T — {0,1} minimizing
Pr[ h(x) #y]



parity counter memory unit 1D gridworld

. ﬁ'—»q?
DFAS: theory 3J Badd Supemed -
= {even, odd} Q—{&O} 0=1{1,2,3,4} 0={1..3}x{1..4)}
= {0, 1} = {0, 04, L} X ={L,R} Z={e,—=,Ts i}

Statistical complexity:
~ Q¥=+2 DFAs with states Q and inputs
= learn e approximation with 0(QZ log(Q) /e) samples

Computational complexity:
 Not efficiently learnable under discrete cube root hypothesis
« Efficiently learnable with membership and equivalence queries!

“interactive learning” bypasses computational hardness for DFAs




Experiments with DFAs

Natural to study DFAs in the context of neural algorithmic reasoning

1d-grid, n=100, k=6, m=120
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Hard to train recurrent models: vanishing gradients lead to slow convergence
Mitigated with other architectures, but new issues crop up: shortcuts



Statistical sequence modeling

Sequence modeling is computationally hard particularly for algorithmic/combinatorial problems

Can we circumventthese barriers?
What are the algorithmic principles for doing so?

For parity, DFAs:
Yes via interactive learning!
X Problem structure is very specific/discrete
X Highly specialized algorithm design

|s there a more general statistical model for studying these questions?




Low rank distributions

Distribution Pr[-] over sequences OT for finite observation space 0

t “histories” t
— —

Pr[-] 0...0] 01t Pr[1..1] rank r

“futures”
Ot+1:T

For each t: Pr| Futures, | Histories, | matrix has rank at most r.
Note: matrices (and factorization) are exponentially large!



“histories” 0, rank r

Low rank distributions

“futures”

<T-t | Ot
Ot+1:T Prl0 1 O1] - X

Special cases:

 Parity (with noise) has rank 4

* DFAs have rank at most Q, the number of states
« Subsumes Hidden Markov models: rank at most S, the number of hidden states

Learning goal: Efficiently output Pr[-] that € approximates Pr[-] in total variation distance

1 _
E ’ Z | Pr[Ol:T] - l:)r[ol:T] | < €

01,...0T

\Efficiently: w.p. 1 — & intime poly(r, T, O,%, log (%)).

Learning low rank distributions from samples o,.t+ ~ Pr[-] is computationally hard!



Interactive learning models

Non-interactive model: iid samples o;.t ~ Pr|:]

« Computationally hard: Parity, DFA, HMM all special cases

Interactive model #1: Exact conditional oracle reveals Pr[f | h] on inputs (h, f).

h e 0t fe 05Tt > Pr[f| h]

@

Interactive model #2: Conditional sampling oracle samples f ~ Pr[-] h] on input h.

4

h e Ot

» f~ Pr[-| h]

Interactive parity
algorithm works here




Our results

Generalizes Angluin’s L* algorithm for learning DFAs.

A is the fidelity of the distribution (defined later). Open problem!
Captures parity, prior results for HMMs, but not DFAs



Proof overview

Structural properties: compact representation via observable operators

« Generalizing Angluin’s L* algorithm with exact conditional probabilities

Estimating operators

Basis finding

Error propagation
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Compact Representation

Basic question: Pr[-] has support OT. Can we efficiently write down estimate Pr[-]?

ldea #1: Use low rank assumption ldea #2: use explicit parametrization
“histories” 0, rank r T(s' | s)
el eoton | x 0(1s)
Factors are still exponentially large! Only plausible for HMMs/DFAs/etc.
4 N

Proposition: For any rank r distribution, there exist matrices {A, t}oeo,tef0,..,7—13 Of

size at most r X r such that

\ Vxl, X (S OT: Pl‘[xl, ...xT] — AXT,T—]. AxT—llT_z ...Axl,o j




Compact representation 1: basis histories

Pr[F;|h] = Pr[F;|B: 1B (h)

h

By

Q)

01 Fe i1

02F¢ 41

Bt+1

B.o,

B:o,

.B(Bt01i

Pr(F, | H]

Pr{Fisq | Heyq]

Prl 0yFiq1 | Byl = Pr[ Feyq | Beoy | - diag(Prlo;|B])

Each matrix has a “basis” of r histories B,, which can linearly represent all columns

Basis submatrices appear in matrix at the next time! (up to rescaling)

Can write basis attime t as a function of basisattime t + 1



Compact representation 2: operators

Prl[oF,i1 | Be] = Pr[Feiq | By o] - diag(Pr[o|B;]) = Pr[Fyyq | Beyq] {ﬁ(BtO) . diag(Pr[oIBt])J

If A, ¢S are known, we can inductively compute basis matrices! Aoy
Base case: Fr = @ so Pr[F;|By] =1
— ' Pr[o; ... 04| By]
Aoy -1 Prlo, Fr|Br_4] ] > S
\ ‘ PI‘[01 ...02|B0]
[Pr[FTIBT] =1 ] Full sequence probabilities!
— Prlo, ..0plBo]
ryo, ...o
AOZ,T—l Prlo,Fr|Br_4] ] > : = <
\ — PI‘[OZ “en 02|B0]




Compact representation 3: operators

4 )
Proposition: For any rank r distribution, there exist matrices {4, t}oeotefo,..,7-13 Of

size at most r X r such that

\ Vxl, ...xT (S OT: PI‘[Xl, xT] — AXT,T—l A.X'T_]_,T—Z '"Axer j

A, is the solution to the equation Pr[F,,1|By114,: = PrloF,,|B;]

Operators also describe the (nonlinear) evolution of the coefficients g(h) — B(ho):
Prlolh] - B(ho) = A,:B(h)

Low rank distributions admit efficient/compact representation

Linear system solve yields operators when bases B; are known (in exact model)
But how do we find the bases?



With queries to exact
cond. probs.

Interlude: Generalizing Angluin’s L*

Aot

Pr{Fei1 | Bey1]Aor = ProFiyq | Bl




With queries to exact
cond. probs.

Interlude: Generalizing Angluin’s L*

h
|dea: grow basis iteratively, starting from |B,; .| = 1
Replace futures F;, ; with spanning set of “tests” A;,4 ! I, . !
o,t /
A By q T 5;/
PriAcyq | Beyr 1 Age = PrloAgq | By B(h)
Model is correct if rank is large, but what if it isn't? _ >
X ¢4 Ay t+1 H ~ Aot ]

Test: Sample sequences from Pr[-], check model on x;.; 1A (for all t).

Lemma: If model agrees on 1/e% sequences x;..,, (for all t), we are done.
Idea: TV small if one-step errors small on average over history.

Lemma: Mistake on hxA,,, but not hA,,,; expands basis! Can only happen r times.
Pr[Agq|R] = Pr[At+1|Bt+1],5ql)
Pr{xAiy2|Beyq] = Pr[/lt+2|Bt;I-2] Ayti1
Pr{xA.,o|h] # Pr[ﬂt+2|Bt+2]Ax,t+1,8(h)



Proof overview

Structural properties: compact representation via observable operators

« Generalizing Angluin’s L* algorithm with exact conditional probabilities

Estimating operators

Basis finding

Error propagation



-stimating operators

Suppose we have basis histories B, and B,_,. Main equation is:

Pr[F; | B; ]y -1 = ProF; | B;_4]

Issue #1: Matrices are exponentially large! Solution: use tests

Issue #2: Test probabilities Pr[A|b] exponentially small; impossible to estimate with samples

/Let D, be a diagonal matrix with d,(f) :== E,_g [Pr[f | b]] on the diagonal.
[Pr[Ft | B,]"D;/1Pr[F, | B, ]]A(,,t_1 =[Pr[Ft | B,]"D; Pr[oF, | Bt—l]]

N > q Y

Now entries are reasonable pr[f|b] P flb]
r
2 D

Can estimate to additive accuracy, but small probabilities still tricky.




Z- Ao,t—l =Q

-stimating operators [ S = PriF, | BITD;PrF, | B ]

Estimating individual entries yields Frobenius norm guarantee

1z -2, <v

But we need to invert £ to estimate A, ¢—1. We care about singular values, could be small!

Preconditioning helps (e.g., in parity), but not always. [D; = diag([gb~32[pr[f | b1]) J
= N - = o Al [ )
Fidelity: Pr[-] has fidelity A if there exists a basis Bf of size |Bf| < 1/A such that
1 L1
Omin (Dt, *E[Pr[F; | xq. JPr[F, | X1:t]T]Dt 2) = A
Implies existence of a robust basis, one with g (Z(B)) = A. y

Lemma: With A robust basis, can estimate operators 4, in £, norm



On fidelity

Main equation is Pr[F; | By ]Ay¢—1 = Pr[oF; | By_4]
Need to learn 4, ._4. Essentially no other structure available!

Challenge #1: Need to estimate design matrix, already non-trivial. We use preconditioning.

Challenge #2: Small singular values => impossible to estimate 4, ;_4in all directions.

« Can project out small directions, but unclear how these errors propagate

« High fidelity => no small singular values => can estimate 4, ;_4



Proof overview

Structural properties: compact representation via observable operators

« Generalizing Angluin’s L* algorithm with exact conditional probabilities

Estimating operators

Basis finding

Error propagation



Z- Ao,t—l =Q

FINnding bases [ 2= PrlF, | B]"D;*Pr(F, | B] ]

Lemma: Under fidelity, a random sample of poly histories suffices Can approximate ]

with samples

1

Omin (Dt, *E[Pr[F; | x1. |Pr[F; | x1:t]T]Dt,_§) = A

‘ Need to swap with
1
D.(B;) =

Can bound ;*({]3) because B* is a basis. Write Pr[f|h] = Pr[f|B*]a(h) with |a(h)], < 1
We use volumetric spanner instead of basis for norm control, one of size O(r) always exists.

Can also adapt basis finding strategy from exact case, but not required under fidelity



Proof overview

Structural properties: compact representation via observable operators
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Error propagation

— 1 . -
TV(PALLPA) =5 ) | Ay Ay = Ay oA |

X1:T

Exponentially many terms and iterated matrix multiple: error amplification!

If we have |4, — A, |, < 0(€) natural to decompose

|A
2

Xt:1 |2

TV(PrLLBELD) < D Vrpeaal, 1 Ay = Areys

But could have |4, ¢|, = r so terms could be exponentially large



Error propagation [ pioth - p0h0) = 4,08 |

A

— 1 -
TV(PHLLPEL) =50 ) | Ayy oAy = Ay A |

X1:T

» Refined analysis for estimating operators Ao,t: error in the space of coefficients

(Ap: — Ay t)u = B(Birq)a (plus small orthogonal component) with |a]; < €

* Inductive argument with three error terms
Ax1:t - Axlzt = (Axt o Axt)Ax1:t—1 + Axt(Ax1:t—1 - Ax1:t—1) + (Axt _ Axt) (Ax1:t—1 o Ax1:t—1)

» Always track error in the space of coefficients

Ay — Axu ~ B(H)y(x;.) (plus orthogonal component) with 3, [y(x;.)l; < O(te)



Conclusion and discussion

» Recap: Interactive access (cond. probs. or samples) can bypass computational hardness for HMMs
» All HMMs with conditional probability access
« HMMs with high fidelity with conditional samples: covers parity but not all DFAs

» Open problem: Efficiently learn all HMMs with conditional samples
 Challenge is poor conditioning: cannot estimate operators A4, ; in all directions
 But truncation/projection poorly understood: approximate an HMM by one with fewer states?

 Practical speculation: Can conditional sampling improve LLMs?

Thanks!
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