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Statistical modeling of sequences

Large language models

Robotics and decision making

Speech/Audio

Biology



Computational cost?

Sequence modeling is computationally hard particularly for algorithmic/combinatorial problems

Can we circumvent these barriers? 
What are the algorithmic principles for doing so?

Kaplan, McCandlish et al. Scaling laws for neural language models. 2020
Liu, Ash, Goel, K, Zhang. Exposing attention glitches with flip-flop language modeling. 2023

“data requirements growing very slowly as D ∼ C0.27 with compute”



Computational barriers in sequence modeling

Learning parity (with noise)

Learning deterministic finite automata



Vignette #1: learning parity (with noise)

?

Planted subset S ⊂ n  of size k

Samples x, y ∈ {−1,1}n × {−1,1}

• x ∼ Unif({−1,1}n)

• y = Πi∈S xi 

Find classifier h: {−1,1}n → {−1,1} minimizing

Pr[ h x ≠ y ]

Noisy version: y = Πi∈S xi with prob 3/4



Parity: theoretical results

Statistical complexity: Θ(k log n) for k-sparse parity
n
k  hypothesis, all wrong ones have error rate ½

 Parity functions are orthogonal: 𝔼  χS x χT x = 1{ T = S }

Computational complexity: 

• Noiseless parity: poly(n) time via Gaussian elimination

• Noisy case: try all n
k ∼ nk hypotheses

• Ω(nk) time via statistical queries

• Noisy parity: conjectured nΩ(k) for all algorithms
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Kearns. Efficient noise tolerant learning from statistical queries. 1998



Experiments with parity

Barak. Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit. 2023.
Abbe. Provably advantage of curriculum learning on parity targets with mixed inputs. 2023.

Accuracy curves shift left with more samples => comp-stat tradeoff



Experiments with parity

Barak et al. Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit. 2023.
Abbe et al. Provably advantage of curriculum learning on parity targets with mixed inputs. 2023.

Problem gets much 
harder as k 
increases



Interactive learning for sparse parity

Pick arbitrary x, get label y
For each i ∈ n : query xi = (x1, … , 1 − xi, … , xn) get label yi 

O(n) queries/samples and O(n) time
• Works with noise
• Works for any sparsity

“interactive learning” bypasses computational hardness for parity



Vignette #2: Deterministic finite automata

𝑞0 𝑞⋆ Deterministic Finite Automata:
• Finite state space Q, start state q0, goal q⋆

• Finite input alphabet Σ
• Transition operator T: Q × Σ → Q

Learning problem: unknown DFA with n states
Samples x, y ∈ ΣT × {0,1}
• x ∼ Unif(ΣT)
• y = 1{qT x =  q⋆}, where qt(x) = T(qt−1 x , xt) 

Find classifier h: ΣT → {0,1} minimizing
Pr[ h x ≠ y ]?



DFAs: theory

Statistical complexity: 

∼ QQ×Σ+2 DFAs with states Q and inputs Σ
⇒ learn ϵ approximation with O(QΣ log Q /ϵ) samples

Computational complexity: 

• Not efficiently learnable under discrete cube root hypothesis

• Efficiently learnable with membership and equivalence queries!

Kearns and Valiant. Cryptographic limitations on learning Boolean formulae and finite automata. 1994
Angluin. Learning regular sets from queries and counterexamples. 1987

“interactive learning” bypasses computational hardness for DFAs



Experiments with DFAs

Natural to study DFAs in the context of neural algorithmic reasoning

Hard to train recurrent models: vanishing gradients lead to slow convergence
Mitigated with other architectures, but new issues crop up: shortcuts

Liu, Ash, Goel, K, Zhang. Transformers learn shortcuts to automata. 2022. 



Statistical sequence modeling

Sequence modeling is computationally hard particularly for algorithmic/combinatorial problems

For parity, DFAs:

 ✅ Yes via interactive learning! 

 ❌ Problem structure is very specific/discrete

 ❌ Highly specialized algorithm design

Can we circumvent these barriers? 
What are the algorithmic principles for doing so?

Is there a more general statistical model for studying these questions?



Low rank distributions

Distribution Pr[⋅] over sequences OT for finite observation space O

Pr[O≤T −t ∣ Ot] =“futures”
ot+1:T

“histories”
o1:t

×

rank r

For each t: Pr  Futurest Historiest ] matrix has rank at most r.
Note: matrices (and factorization) are exponentially large!

Pr[⋅∣ 0 … 0] Pr[⋅∣ 1 … 1]

ቊ𝑡ቊ𝑡



Low rank distributions
Pr[O≤T −t ∣ Ot] =

“futures”
ot+1:T

“histories” o1:t

×

rank r

Special cases:
• Parity (with noise) has rank 4
• DFAs have rank at most Q, the number of states
• Subsumes Hidden Markov models: rank at most S, the number of hidden states

Learning goal: Efficiently output ෢Pr ⋅  that ϵ approximates Pr[⋅] in total variation distance
1
2

⋅ ෍
o1,…oT

 Pr o1:T − ෢Pr o1:T  ≤ ϵ

Efficiently: w.p. 1 − δ in time poly(r, T, O, 1
ϵ

, log 1
δ

).

Learning low rank distributions from samples o1:T ∼ Pr[⋅] is computationally hard!



Non-interactive model: iid samples o1:T ∼ Pr ⋅
• Computationally hard: Parity, DFA, HMM all special cases

Interactive model #1: Exact conditional oracle reveals Pr[f ∣ h] on inputs (h, f).

Interactive model #2: Conditional sampling oracle samples f ∼ Pr[⋅∣ h] on input h.

Interactive learning models

h ∈ Ot, f ∈ O≤T−t Pr[f ∣ h]

h ∈ Ot f ∼ Pr ⋅ h

Chakraborty et al. On the power of conditional samples in distribution testing. 2013

Interactive parity 
algorithm works here



Our results

Theorem 1: poly(r, T, O, 1
ϵ

, log 1
δ

) time algorithm for rank r distributions using iid 

samples and exact conditional probability oracle

Theorem 2: poly(r, T, O, 1
Δ

, 1
ϵ

, log 1
δ

) time algorithm for rank r distributions using iid 

samples and conditional sampling oracle. 

Δ is the fidelity of the distribution (defined later). Open problem!
Captures parity, prior results for HMMs, but not DFAs

Generalizes Angluin’s L* algorithm for learning DFAs. 



Proof overview

• Structural properties: compact representation via observable operators

• Generalizing Angluin’s L* algorithm with exact conditional probabilities

• Estimating operators

• Basis finding

• Error propagation
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Compact Representation
Basic question: Pr[⋅] has support OT. Can we efficiently write down estimate ෢Pr[⋅]? 

Pr[𝑂≤𝑇 −𝑡 ∣ 𝑂𝑡] =
“futures”

ot+1:T

“histories” o1:t

×

rank r

s1 s2 s3 s4

o1 o2 o3 o4

T(s′ ∣ s)

O(o ∣ s)

Idea #1: Use low rank assumption

Factors are still exponentially large!

Idea #2: use explicit parametrization

Only plausible for HMMs/DFAs/etc.

Proposition: For any rank 𝑟 distribution, there exist matrices {𝐴𝑜,𝑡}𝑜∈𝑂,𝑡∈{0,…,𝑇−1} of 
size at most 𝑟 ×  𝑟 such that

∀𝑥1, … 𝑥𝑇 ∈ 𝑂𝑇:  Pr 𝑥1, … 𝑥𝑇 = 𝐴𝑥𝑇,𝑇−1 𝐴𝑥𝑇−1,𝑇−2 … 𝐴𝑥1,0

Jaeger. Observable operator models for discrete stochastic time series. 2000



Compact representation 1: basis histories

Pr[𝐹𝑡 ∣ 𝐻𝑡]

ℎ 𝐵𝑡

Each matrix has a “basis” of 𝑟 histories 𝐵𝑡 , which can linearly represent all columns
Basis submatrices appear in matrix at the next time! (up to rescaling)
Can write basis at time 𝑡 as a function of basis at time 𝑡 + 1

𝛽(ℎ)

Pr[𝐹𝑡+1 ∣ 𝐻𝑡+1]

𝐵𝑡+1

𝑜1 𝐹𝑡+1

𝑜2𝐹𝑡+1

𝐵𝑡𝑜1 𝐵𝑡𝑜2

𝛽(𝐵𝑡𝑜1 )

Pr 𝑜2𝐹𝑡+1 𝐵𝑡 =  Pr 𝐹𝑡+1 𝐵𝑡𝑜2 ⋅ diag(Pr 𝑜2 𝐵𝑡 ) 

Pr 𝐹𝑡 ℎ = Pr 𝐹𝑡 𝐵𝑡 𝛽(ℎ)



Pr 𝑜 𝐹𝑡+1 𝐵𝑡 =  Pr 𝐹𝑡+1 𝐵𝑡 𝑜 ⋅ diag Pr 𝑜 𝐵𝑡 =  Pr 𝐹𝑡+1 𝐵𝑡+1 ⋅ 𝛽 𝐵𝑡𝑜 ⋅ diag Pr 𝑜 𝐵𝑡

Compact representation 2: operators

𝐴𝑜,𝑡

Pr 𝐹𝑇 𝐵𝑇 = 1 

If 𝐴𝑜,𝑡s are known, we can inductively compute basis matrices!
Base case: 𝐹𝑇 = ∅ so Pr 𝐹𝑇 𝐵𝑇] = 1

Pr 𝑜1𝐹𝑇 𝐵𝑇−1  

Pr 𝑜2𝐹𝑇 𝐵𝑇−1  

Pr 𝑜1 … 𝑜1 𝐵0  

Pr 𝑜1 … 𝑜2 𝐵0  

Pr 𝑜2 … 𝑜2 𝐵0  

Pr 𝑜2 … 𝑜1 𝐵0  

𝐴𝑜1,𝑇−1

𝐴𝑜2,𝑇−1

Full sequence probabilities!



Compact representation 3: operators

Proposition: For any rank 𝑟 distribution, there exist matrices {𝐴𝑜,𝑡}𝑜∈𝑂,𝑡∈{0,…,𝑇−1} of 
size at most 𝑟 ×  𝑟 such that

∀𝑥1, … 𝑥𝑇 ∈ 𝑂𝑇:  Pr 𝑥1, … 𝑥𝑇 = 𝐴𝑥𝑇,𝑇−1 𝐴𝑥𝑇−1,𝑇−2 … 𝐴𝑥1,0

𝐴𝑜,𝑡 is the solution to the equation Pr 𝐹𝑡+1 𝐵𝑡+1]𝐴𝑜,𝑡 =  Pr 𝑜𝐹𝑡+1 𝐵𝑡] 

Operators also describe the (nonlinear) evolution of the coefficients 𝛽 ℎ ↦ 𝛽(ℎ𝑜):

Pr 𝑜 ℎ ⋅ 𝛽 ℎ𝑜 = 𝐴𝑜,𝑡𝛽(ℎ)

Low rank distributions admit efficient/compact representation
Linear system solve yields operators when bases 𝐵𝑡  are known (in exact model)
But how do we find the bases?

Jaeger. Observable operator models for discrete stochastic time series. 2000



Interlude: Generalizing Angluin’s L*
With queries to exact 

cond. probs.

𝐵𝑡+1𝐵𝑡
𝐴𝑜,𝑡

Pr 𝐹𝑡+1 𝐵𝑡+1 𝐴𝑜,𝑡 = Pr[𝑜𝐹𝑡+1 ∣ 𝐵𝑡]

𝐵𝑡



Idea: grow basis iteratively, starting from 𝐵𝑡+1 = 1
Replace futures 𝐹𝑡+1 with spanning set of “tests” Λ𝑡+1

Pr Λ𝑡+1 𝐵𝑡+1  መ𝐴𝑜,𝑡 =  Pr[𝑜Λ𝑡+1 ∣ 𝐵𝑡] 

Model is correct if rank is large, but what if it isn’t?

With queries to exact 
cond. probs.Interlude: Generalizing Angluin’s L*

𝐵𝑡 +1
⋆ 𝐵𝑡

⋆

≈ 𝐴𝑜,𝑡

መ𝐴𝑜,𝑡

Test: Sample sequences from Pr[⋅], check model on 𝑥1:𝑡+1Λ𝑡+1 (for all 𝑡).

Lemma: If model agrees on 1/𝜖2 sequences 𝑥1:𝑡+1 (for all 𝑡), we are done.
 Idea: TV small if one-step errors small on average over history. 

Lemma: Mistake on ℎ𝑥𝜆𝑡+2 but not ℎΛ𝑡+1 expands basis! Can only happen 𝑟 times.
Pr Λ𝑡+1 ℎ =  Pr Λ𝑡+1 𝐵𝑡+1 𝛽 ℎ

Pr[𝑥𝜆𝑡+2|𝐵𝑡+1] =  Pr 𝜆𝑡+2 𝐵𝑡+2] መ𝐴𝑥,𝑡+1
Pr 𝑥𝜆𝑡+2 ℎ] ≠ Pr 𝜆𝑡+2 𝐵𝑡+2 መ𝐴𝑥,𝑡+1𝛽 ℎ

ℎ

𝑥𝜆𝑡+2

𝛽(ℎ)

መ𝐴𝑥,𝑡+1



Proof overview

• Structural properties: compact representation via observable operators

• Generalizing Angluin’s L* algorithm with exact conditional probabilities

• Estimating operators

• Basis finding

• Error propagation



Estimating operators
Suppose we have basis histories 𝐵𝑡  and 𝐵𝑡−1. Main equation is:

Pr 𝐹𝑡 𝐵𝑡 𝐴𝑜,𝑡−1 = Pr[𝑜𝐹𝑡 ∣ 𝐵𝑡−1]

Issue #1: Matrices are exponentially large! Solution: use tests

Issue #2: Test probabilities Pr 𝜆 𝑏] exponentially small; impossible to estimate with samples

Now entries are reasonable

෍
𝑓

𝑑𝑡 𝑓 ⋅
Pr 𝑓 𝑏𝑖  Pr[𝑓|𝑏𝑗]

𝑑𝑡 𝑓 2

Can estimate to additive accuracy, but small probabilities still tricky. 

Let 𝐷𝑡 be a diagonal matrix with 𝑑𝑡 𝑓 ≔  𝔼𝑏∼𝐵𝑡[Pr 𝑓 𝑏 ] on the diagonal.

Pr 𝐹𝑡 ∣ 𝐵𝑡
⊤𝐷𝑡

−1Pr 𝐹𝑡 𝐵𝑡  𝐴𝑜,𝑡−1 = Pr 𝐹𝑡 ∣ 𝐵𝑡
⊤𝐷𝑡

−1Pr[𝑜𝐹𝑡 ∣ 𝐵𝑡−1]

𝛴 𝑄



Estimating operators

Estimating individual entries yields Frobenius norm guarantee

| Σ − ෠Σ | 𝐹 ≤ 𝛾

But we need to invert ෠𝛴 to estimate 𝐴𝑜,𝑡−1. We care about singular values, could be small! 

Preconditioning helps (e.g., in parity), but not always. 

Σ =  Pr 𝐹𝑡 ∣ 𝐵𝑡
⊤𝐷𝑡

−1Pr 𝐹𝑡 𝐵𝑡
Σ ⋅ 𝐴𝑜,𝑡−1 = 𝑄

Fidelity: Pr[⋅] has fidelity Δ if there exists a basis 𝐵𝑡
⋆ of size 𝐵𝑡

⋆ ≤ 1/Δ such that

𝜎min 𝐷𝑡
⋆,−1

2𝔼 Pr 𝐹𝑡 𝑥1:𝑡 Pr 𝐹𝑡 𝑥1:𝑡
⊤ 𝐷𝑡

⋆,−1
2 ≥ Δ 

Implies existence of a robust basis, one with 𝜎min Σ 𝐵 ≥ Δ.

𝐷𝑡
⋆ = diag(𝔼𝑏∼𝐵𝑡

⋆ Pr 𝑓 𝑏 )

Lemma: With Δ robust basis, can estimate operators 𝐴𝑜,𝑡−1 in ℓ2 norm



On fidelity

Main equation is         Pr 𝐹𝑡 𝐵𝑡 𝐴𝑜,𝑡−1 = Pr[𝑜𝐹𝑡 ∣ 𝐵𝑡−1]

Need to learn 𝐴𝑜,𝑡−1. Essentially no other structure available!

Challenge #1: Need to estimate design matrix, already non-trivial. We use preconditioning.

Challenge #2: Small singular values => impossible to estimate 𝐴𝑜,𝑡−1in all directions.

• Can project out small directions, but unclear how these errors propagate

• High fidelity => no small singular values => can estimate 𝐴𝑜,𝑡−1
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Finding bases

Lemma: Under fidelity, a random sample of poly histories suffices

𝜎min 𝐷𝑡
⋆,−1

2𝔼 Pr 𝐹𝑡 𝑥1:𝑡 Pr 𝐹𝑡 𝑥1:𝑡
⊤ 𝐷𝑡

⋆,−1
2 ≥ Δ

Can also adapt basis finding strategy from exact case, but not required under fidelity

Can approximate 
with samples

Can bound 
𝑑 𝑓

𝑑⋆ 𝑓
 because 𝐵⋆ is a basis. Write Pr 𝑓 ℎ =  Pr 𝑓 𝐵⋆ 𝛼(ℎ) with |𝛼 ℎ |2 ≤ 1

 We use volumetric spanner instead of basis for norm control, one of size 𝑂(𝑟) always exists. 

Need to swap with 

𝐷𝑡 𝐵𝑡
−1

2

Hazan et al. Volumetric spanners: An efficient exploration basis for learning. 2016.

Σ =  Pr 𝐹𝑡 ∣ 𝐵𝑡
⊤𝐷𝑡

−1Pr 𝐹𝑡 𝐵𝑡
Σ ⋅ 𝐴𝑜,𝑡−1 = 𝑄



Proof overview

• Structural properties: compact representation via observable operators

• Generalizing Angluin’s L* algorithm with exact conditional probabilities

• Estimating operators

• Basis finding

• Error propagation



Error propagation

TV Pr ⋅ , ෢Pr ⋅ ≔
1
2

⋅ ෍
𝑥1:𝑇

| 𝐴𝑥𝑇 … 𝐴𝑥1  − መ𝐴𝑥𝑇 … መ𝐴𝑥1|

Exponentially many terms and iterated matrix multiple: error amplification!

If we have |𝐴𝑜,𝑡  − መ𝐴𝑜,𝑡|2 ≤ 𝑂 𝜖  natural to decompose

TV Pr ⋅ , ෢Pr ⋅ ≤ ෍ መ𝐴𝑥𝑇:𝑡+2 2
⋅ | መ𝐴𝑥𝑡+1 − 𝐴𝑥𝑡+1 ቚ

2
𝐴𝑥𝑡:1 2

But could have |𝐴𝑜,𝑡|2 ≈ 𝑟 so terms could be exponentially large



Error propagation

TV Pr ⋅ , ෢Pr ⋅ ≔
1
2

⋅ ෍
𝑥1:𝑇

| 𝐴𝑥𝑇 … 𝐴𝑥1  − መ𝐴𝑥𝑇 … መ𝐴𝑥1|

• Refined analysis for estimating operators መ𝐴𝑜,𝑡: error in the space of coefficients

𝐴𝑜,𝑡  − መ𝐴𝑜,𝑡 𝑢 ≈  𝛽 𝐵𝑡+1 𝛼 (plus small orthogonal component) with  |𝛼|1 ≤ 𝜖 

• Inductive argument with three error terms

𝐴𝑥1:𝑡 − መ𝐴𝑥1:𝑡 = 𝐴𝑥𝑡 − መ𝐴𝑥𝑡 𝐴𝑥1:𝑡−1 + 𝐴𝑥𝑡 𝐴𝑥1:𝑡−1 − መ𝐴𝑥1:𝑡−1 + መ𝐴𝑥𝑡 − 𝐴𝑥𝑡 (𝐴𝑥1:𝑡−1 − መ𝐴𝑥1:𝑡−1)

• Always track error in the space of coefficients

𝐴𝑥1:𝑡 − መ𝐴𝑥1:𝑡 ≈ 𝛽 𝐻 𝛾(𝑥1:𝑡) (plus orthogonal component) with σ𝑥1:𝑡 𝛾 𝑥1:𝑡 1 ≤ 𝑂 𝑡𝜖

Hsu et al. A spectral algorithm for learning hidden Markov models. 2009.

Pr 𝑜 ℎ ⋅ 𝛽 ℎ𝑜 = 𝐴𝑜,𝑡𝛽(ℎ)



Conclusion and discussion

• Recap: Interactive access (cond. probs. or samples) can bypass computational hardness for HMMs
• All HMMs with conditional probability access
• HMMs with high fidelity with conditional samples: covers parity but not all DFAs

• Open problem: Efficiently learn all HMMs with conditional samples
• Challenge is poor conditioning: cannot estimate operators 𝐴𝑜,𝑡 in all directions
• But truncation/projection poorly understood: approximate an HMM by one with fewer states?

• Practical speculation: Can conditional sampling improve LLMs?

Thanks!
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