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Introduction

A depth 2, width 4 net computing the max of 2 numbers
- via σ ∶ x↦max{0, x} “activation” at the (blue) gates.
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Introduction

Defining Neural Nets

The key component of a neural net is an “activation function” and
the most widely used one is the “Rectified Linear Unit (ReLU)”,

ReLU ∶ Rn ∋ x↦ (max{0, x1},max{0, x2}, . . . ,max{0, xn}) ∈ Rn

What is a neural net?

Given {Ai ∶ Rwi−1 → Rwi ∣ i = 1, . . . , k + 1}, a set of k + 1 affine

transformations, it defines a depth k + 1 “ReLU Deep Neural Net
(DNN)” as the following function,

Rw0 ∋ x↦N(x) = Ak+1 ○ReLU ○Ak ○ ⋯ ○A2 ○ReLU ○A1 ∈ Rwk+1
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Introduction

An Example of a R4
→ R3 Neural Architecture

Figure: Unlike the max computing net, this is not a neural function because
weights have not been assigned on the edges. Such a diagram/architecture
defines a certain set of neural functions.

Anirbit (University of Manchester) January 19, 2023 5 / 38



Introduction

Why Are Neural Functions Exciting?

The above realistic human portraits are outputs of a neural net!
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Introduction

The Neural Landscape Makes Optimization Very Hard!
(But Why Do Simple Algorithms Still Work?)

This is a famous diagram from the paper “Visualizing the Loss
Landscape of Neural Nets” by Hao Li, Zheng Xu, Gavin Taylor,
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Introduction

What Is Provably Known About Neural Net Training?

In 2016 we showed the first exact empirical risk minimization on nets.

Theorem (with R. Arora, A. Basu, P. Mianjy (ICLR 2018))

Empirical risk minimization on 1-DNN with a convex loss,
such as minwi,ai,bi,b

1
S ∑

S
i=1 ∥yi −∑width

p=1 apmax{0, ⟨wp,xi⟩ + bp}∥22
can be done in time, 2widthSn×widthpoly(n,S,width).

Before the above result, it was not clear if there is any
fundamental barrier to getting poly(training data size)

run-time for exact global minima finding on ReLU nets.
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Introduction

Proof of trainability remains open in almost all realistic
parameter regimes for nets i.e at finite sizes and without

fixing to specific data distributions.

Our results in 2020 probed the challenging trifecta of,

(1) training a ReLU gate,
(2) while using non-realizable data,

AND

(3) wanting the algorithm to resemble SGD
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Introduction

Provable Iterative Non-Gradient Algorithm for Data-Poisoning Resistant

Training of a ReLU Gate. (with Sayar, Neural Networks, Vol 151, 2022)

1: Input: An arbitrarily chosen starting point of w1 ∈ Rn

2: for t = 1, . . . do
3: We sample independently st ∶= {xt1 , . . . ,xtb} ∼ D

- and query the oracle with this set.
4: The Oracle samples ∀i = 1, . . . , b, αti ∼ {0,1}

- with probability {1 − β(xti), β(xti)}
5: The Oracle replies ∀i = 1, . . . , b,yti = αti ⋅ ξti +ReLU(w⊺∗xti)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Additively distorted true label!

- s.t ∣ξti ∣ ≤ θ∗
6: Form the gradient (proxy),

gt ∶= −
1

b

b

∑
i=1

1{yti
>θ∗}(yti −w

⊺
txti)xti

7: wt+1 ∶=wt − ηgt
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Introduction

Provable modified S.G.D and yet unproven true S.G.D are
virtually indistinguishable for the ReLU gate!

(with Sayar, Neural Networks, Vol 151, 2022)

Figure: For the provable modified S.G.D on the (Left) and yet unproven S.G.D on
the (Right), the above figures give the time evolution of the distance to the
unperturbed risk minima for a ReLU ∶ R500 → R - the adversary is attacking with
a probability of 1

2
and the mini-batch size is 16 and we vary the allowed attack

magnitude.
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Introduction

Provable modified S.G.D and yet unproven true S.G.D are
virtually indistinguishable for the ReLU gate!

(with Sayar, Neural Networks, Vol 151, 2022)

Figure: For the provable modified S.G.D on the (Left) and yet unproven S.G.D on
the (Right), the above figures give the time evolution of the distance to the
unperturbed risk minima for a ReLU ∶ R500 → R - the adversary is attacking with
a maximum allowed magnitude of 2 and the mini-batch size is 16 and we vary the
probability of attack.
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Introduction

Provable modified S.G.D and yet unproven true S.G.D are
virtually indistinguishable for the ReLU gate!

(with Sayar, Neural Networks, Vol 151, 2022)

This modified-SGD of ours is possibly the only example of linear
time convergence on a ReLU gate while neither fixing the

functional form of the marginal distribution of the data nor making
symmetry assumptions on it.

Additionally, in this case we can also give guarantees for the
approximate convergence of the algorithm when the training labels

are subjected to a stochastic and bounded additive poisoning
attack.
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Gradient Based Multi-Gate Poly-Time Neural Training

Approaches To Gradient-Based Provable Neural Training

Stochastic Gradient Descent (and its variants) - despite being a very
simple algorithm - has been surprisingly widely successful in training
deep-nets - for various data and various sizes!

This success of SGD despite the complex non-convexity (and also
non-differentiability) of the neural landscape has largely remained
unexplained.

In the rest of the talk we shall establish (likely for the first time) that SGD
can converge to the global minima of certain neural loss functions

- at arbitrary width and data.

To put this in context lets first lets see the history of efforts here!
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Gradient Based Multi-Gate Poly-Time Neural Training

Approaches To Gradient-Based Provable Neural Training

An active line of work explaining optimization in neural nets has been
the Neural Tangent Kernel (NTK).

A key idea in these proofs is that if ϵ is the target accuracy, then at a
fixed depth, one can consider the regime of widths scaling as poly (1ϵ )
(best case known is a polylog (1ϵ ) one by Jie-Telgarsky) – and then
the predictor becomes effectively linear in the weights.

Clearly this width regime is unrealistically large!

Also, one can do careful studies of how the individual data used
in any SGD update affect predictions at other data – and see that this

has very different dynamics between real nets and this limit.

See our work, on this “local elasticity” perspective of deep-learning,
arXiv:2111.01166
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Gradient Based Multi-Gate Poly-Time Neural Training

Prominent Approaches To Provable Neural Training

Another recent line of research for analyzing SGD for neural nets is
the mean-field approach. Here the key idea is to formulate the study
of neural weight dynamics during training as a study of the dynamics
of probability distributions on the neural net weight space.

This replaces a non-convex optimization problem in finite dimensions
by a convex optimization problem in infinite dimensions. Clearly such
analysis is meaningful only for infinitely wide nets.
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Gradient Based Multi-Gate Poly-Time Neural Training

Provable Multigate Neural Training

2015 – first convergence on multi-gate nets – but for realizable data
and with restrictive assumptions about knowing the score function
(Janzamin et al. 2015) – [Improved in Awasthi et al. 2021]
2016 – Our first deterministic, any width any data provable exact
training, Arora et al. 2016.
2017 – Zhong et al. 2017 on GD for depth 2 nets with realizable data
[Improved in Zhang et al. 2019]
2018 – Lazy differential programming (Chizat et al. 2018), First NTK
result (Jacot et al. 2018)
2019 – multi depth NTK (Allen-Zhu et al. 2019)
2021 – ResNet convergence through mean–field (Fang et al. 2021)

In summary, it seems to have remained an unresolved challenge to

show convergence of SGD on any neural architecture with a

constant number of gates while neither constraining the labels nor

the marginal distributional of the data to a specific functional form.
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Neural Nets & Villani Functions

Our Story Begins with arXiv: 2004.06977
(Bin Shi, Weijie Su & Michael Jordan)

Shi et al. 2020 analyse the effect of learning rate on SGD by studying
the corresponding continuous time limit/Stochastic Differential
Equation (SDE)

Formally, for an objective function L̃(W) where W denotes the
weight matrix, the minibatch SGD update at the k-th step is given by

Wk+1 =Wk −
s

B

B

∑
i=1

∇L̃i(Wk)

where the indices i = 1,2, . . . ,B are the random minibatch
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Neural Nets & Villani Functions

Summary of arXiv: 2004.06977:
(Bin Shi, Weijie Su & Michael Jordan)

Given the above step-size s SGD update, the authors proved its
iterates to be close to the following SDE,

dWs(t) = −∇WsL̃(Ws(t))dt +
√
sdB(t)

(where B(t) is the standard Brownian motion)

Then the density of Ws evolves according to the following
Fokker-Plank-Smoluchowski PDE

∂ρs
∂t
= ∇ ⋅ (ρs∇L̃) +

s

2
∆ρs
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Neural Nets & Villani Functions

Summary of arXiv: 2004.06977
(Bin Shi, Weijie Su & Michael Jordan)

They showed that when L̃, is a “Villani Function”, solution to the
above F.P.S. PDE converges to the following Gibbs measure - with a
provable convergence rate.

µs(Ws) =
1

Zs
exp(−2L̃(Ws)

s
)

where, Zs is the normalization constant.

The idea of Villani functions possibly first occurred/were explained in
Cedric Villani’s 2009 monograph, “Hypocoercivity”.
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Neural Nets & Villani Functions

Summary of arXiv: 2004.06977:
(Bin Shi, Weijie Su & Michael Jordan, )

Definition (Villani Functions)

A map f ∶ Rd → R is called a Villani function,
if it satisfies the following conditions,

1 f ∈ C∞

2 lim∣∣x∣∣→∞ f(x) = +∞

3 ∫
Rd

exp (−2f(x)
s )dx <∞ ∀s > 0

4 lim∣∣x∣∣→∞ (−∆f(x) + 1
s ⋅ ∣∣∇f(x)∣∣

2) = +∞ ∀s > 0

Further, any f that satisfies conditions 1,2 & 3 is said to be “confining”.
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Neural Nets & Villani Functions

Summary of arXiv: 2004.06977
(Bin Shi, Weijie Su & Michael Jordan)

Key to their argument for getting the non-asymptotic convergence is the
fact that the Gibbs’ measure corresponding to a Villani function satisfies

the following Poincaré–type inequality,

Theorem (Shi et al. 2020)

For a Villani function f, for any given s > 0, define Gibbs’ density,

µs(x) = 1
Zs

exp (−2f(x)
s ), where Zs is a normalization factor. Then µs

satisfies a Poincare – type inequality i.e ∃ λs > 0 (determined by f) s.t
∀h ∈ C∞c (Rd) we have,

Varµs[h] ≤
s

2 ⋅ λs
Eµs[∣∣∇h∣∣2]
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Neural Nets & Villani Functions

Can Neural Nets induce Villani functions?

In their paper, Bin Shi, Weijie Su & Michael Jordan had commented,

“some loss functions used for training neural networks might not
satisfy this condition.” (page 9)

Lets See!
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Neural Nets & Villani Functions

Can Neural Nets induce Villani functions?

Consider The Following Setup With Neural Nets!

Define a 2 layer neural net f(x;a,W) ∶ Rd → R with trainable weights
W ∈ Rp×d, fixed weights a ∈ Rp, activation functions σ(⋅) and data
x ∈ Rd as

f(x;a,W) = a⊺σ(Wx).

For n data tuples {(xi, yi) ∈ Rd ×R}ni=1, λ ∈ R≥0, the Frobenius norm
regularized loss we consider is,

L̃(W) = 1

n

n

∑
i=1

(yi − f(xi;a,W))2 +
λ

2
∣∣W∣∣2F
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Neural Nets & Villani Functions

Neural Nets & Villani Functions

Consider The Following Setup With Neural Nets!

Let the activation σ(⋅) be bounded, C∞, L−Lipschitz and
L′σ−smooth. Further, the first and the second derivatives of σ also be
bounded. Eg. tanh & sigmoid

We can relax the boundedness assumption, at the cost of foregoing
discrete time convergence.
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Main results in arXiv:2210.11452 (with Pulkit, DeepMath 2022)

Our Primary Result in arXiv:2210.11452

Theorem (SGD Converges To The Global Minima Of Finite Width Nets)

For the activations considered, the loss L̃ is gLip−gradient Lipschitz &
∃λc > 0 s.t ∀λ > λc the loss function is a Villani function and,

∀ T, ϵ > 0, ∃ constants A(L̃), B(T, L̃) and C(s, L̃) s.t with SGD at

constant stepsize s = s∗ ∶=min( 1
gLip(L̃)

, ϵ
2⋅(A(L̃)+B(T,L̃))

)

And, W0 initialized from ρinitial ∈ L2( 1
µs∗
) where

µs∗ = 1
Zs∗

exp(−2L̃(W)
s∗ ) (Zs∗ being the normalization factor) and for

initialization s.t 2C(s∗, L̃) ⋅ ∣∣ρinitial − µs∗ ∣∣µ−1
s∗
≤ ϵ ⋅ eλs∗ ⋅T ,

we get,

EL̃(W
T
s∗ ) − inf

W
L̃(W) ≤ ϵ
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Main results in arXiv:2210.11452 (with Pulkit, DeepMath 2022)

Remarks & Proof Sketch

For intuition about the value of the regularizer, consider sigmoid
activations and suppose we normalize the data (of max norm Bx) and
the outer layer weights (a) s.t Bx ⋅ ∣∣a∣∣ = 1, then,

λc = 0.125

This critical value of the regularizer comes from the following
condition of being a Villani function,

lim
∣∣x∣∣→∞

(−∆f(x) + 1

s
⋅ ∣∣∇f(x)∣∣2) = +∞ ∀s > 0
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Main results in arXiv:2210.11452 (with Pulkit, DeepMath 2022)

Remarks & Proof Sketch

The gradient Lipschitz condition on the loss function is required by
the standard theorems for converting the continuous-time
convergence achieved through Villani functions to a discrete-time
convergence result.

The loss function L̃ for SoftPlus (smooth version of ReLU) does not
satisfy the smoothness condition - but the SDE shown earlier still
provably converges to the global minima with SoftPlus.
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Main results in arXiv:2210.11452 (with Pulkit, DeepMath 2022)

Our Result in arXiv:2210.11452 About SoftPlus Nets

The SoftPlus activation function is defined as,

SoftPlusβ(x) =
1

β
log(1 + exp(βx))

For any small enough step-size s and λ > λc ∶= 2 1 and for

t ≥ 1
λs

log
2C(s,L̃)∣∣ρinitial−µs∣∣µ−1s

ϵ , we have that,

E L̃(W(t)) −min
W

L̃(W) ≤ ϵ.

(This is linear time convergence)

1for data and last layer norm having been been normalized to have product be 1
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Main results in arXiv:2210.11452 (with Pulkit, DeepMath 2022)

SGD Performance Remains Sensitive To Data Corruption
for λ > λc

SGD experiments on depth 2 sigmoid neural nets confirm that the
regularizer coefficient (18) is not too large to ‘overshadow’ the
empirical loss - we check this via an ablation study on errors w.r.t.
adding noise into the true labels.

Figure: λ = 0.13, width = 10
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Main results in arXiv:2210.11452 (with Pulkit, DeepMath 2022)

A View of What is Known & What Probably Isn’t

Figure: Best test loss across a range of (λ, p = width) for data labelled as,

x ∼ U[0,1)d, y = sin(π ∥x∥
2
2

d ) + ϵ; ϵ ∼ N (0,0.25), d = 20
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Main results in arXiv:2210.11452 (with Pulkit, DeepMath 2022)

A View of What is Known & What Probably Isn’t

Figure: Best test loss across a range of (λ,width = p) for realizable data that is,

x ∼ U[0,1)20, y = a⊺σ(Wx) + ϵ; p = 5, ϵ ∼ N (0,10−2), ai ∼ 1
√
pN (0,1)
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Next Steps!

The Journey Begins!

To best of our knowledge, this is the first result showing global
convergence of SGD on neural nets, without any assumptions on

data or the number of gates. Naturally, we can now ask :
Could this Villani function idea be a general method to prove

SGD convergence on various other neural loss functions?

Can we characterize λs for the Gibbs’ measure of neural nets?
This becomes a very relevant question now that we can establish
that for certain neural losses Poincare constant of the Gibbs’

measure is the time-scale of SGD convergence.
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Next Steps!

The Journey Begins!

In arXiv:2205.11359 (with Sayar & Pulkit) we have given the first
width-independent Rademacher complexity bounds for DeepONets -
which is a novel architecture which uses an inner-product of two

nets to learn maps between Banach spaces
- thus it can solve families of PDEs in one-shot.

As of now there are no provable training for this. A very interesting
next step could be understand training of these wholly new kind of

neural architectures using this new framework.
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Next Steps!

Welcome

To

The Center for A.I Fundamentals
(The University of Manchester)

Questions?
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