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Global Health Allocations

Distribute limited inventory of 100+
essential medicines across 1000+
health facilities in Sierra Leone

Highly uncertain demand, limited
budgets =2 42% of needs not fulfilled

Goal: use Al + OR to do better




Current Approach

* Health facilities “request” 3-month rolling average of demand

 Complex Excel allocation tool (32 tabs)
* Apply rationing parameters (differs based on product, facility type)
* Population/poverty modifiers
* Prioritize hospitals over other types of health facilities




Step 1: Stock -> Step 2: 1st allocation
3 national facility types (National -> District)

Calculate
# stock to
distribute

#18
District
locations

Siclra Leone

|eyidsoH jou3siq

# 11
Districts
locations

____, Distributed parameters are based on: # request, available
stock, level of care, government rationing parameter

Step 3: 2" allocation

Based on outstanding request & available stock

District will distribute to local facilities within the
location by themselves
¢ Medical stores: around 1,200 local facilities
hospitals
hospitals




How does it work?
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Essential Medicine Product

Avg unfulfilled

demand across

the country is
42%!



Predict-then-Optimize?
* Step 1: Train demand prediction model

* Step 2: Optimize allocations based on predictions

* Active area of research: end-to-end learning with constrained
optimization [Kotary, Fioretto, Van Hentenryck, Wilder (2021)]



Learning and Optimization

* Goal: Given response y (e.g., today’s demand), compute decision z (e.g.,
inventory to allocate) to minimize a known decision loss ¢:

z*(y) = argmin€(z; y)
VA
* Problem: Optimization parameters y are unknown

* Strategy: Predict y based on covariates x (e.g., yesterday’s demand)
e Can be complex



Learning and Optimization

* Training phase: Given examples {(x;, y; )}, train a function f; to
predict y given x:

0 = argeminz z(fe (xi); YL*)
l

* Testing phase: Given a new x, form prediction fy(x) (“predict”) and
choose decision z*(y) (“optimize”)

» Key question: What prediction loss (9; y*) to use in training?



Learning and Optimization

* Decision-blind prediction loss: Use a standard loss such as MSE:
tuse(F;y) = (§ — y*)?
* Decision-aware prediction loss: Use the decision loss
t@;y) = £(z*(P); y*) = £(arg min, £(z; 9) ; y*)

* Problem: How to compute £?



Interested in...

* Generality: able to interface with complex data science +
optimization pipelines

 Computational Tractability

* Principled: approximates optimal decision loss
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Prior Work - |

* [Bertsimas & Kallus (2018)] Cluster “nearby” observations (using
CART or LOESS) to estimate conditional distribution y|x in SAA
* Not optimal: predictive model is the same regardless of opt problem
* Not computationally tractable for complex predictive models

* [Kallus & Mao (2022)] Specialized approach for random forests + SAA

* Not computationally tractable: every tree split requires re-solving

optimization problem
* Not general: strategy specific to tree models and one unknown parameter

vector per optimization
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Prior Work - |l

* [ElImachtoub & Grigas (2021)] Approximate decision-aware prediction
loss £ when £ is a LP and prediction fy(x) = 0 "x is linear
* Not general: strategy specific to linear models and known constraints

* [Wilder et al (2019a/b)] Backpropagate through decision loss

 Not general: prediction function fg(x) must be differentiable

* Not computationally tractable: need to solve optimization problem at every
gradient step
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Our Strategy

* We can Taylor expand in y around y* (works well if y = y™)
2z (9); y7) = L(z R e e ) e (v) (7 —y")

* First term (optimal performance) is constant and can be ignored

e Accounts for:
 Effect of prediction on decision
e Effect of decision on decision loss
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Our Strategy

* Prediction model objective is

argmin ) V202 1) y) V2 01 fa i) = %)
: constavnt in 6

* Can be interpreted as re-weighting training examples (x;, y;)

* Compute gradient through OPT objective and OPT decision
e Can be computed efficiently (Amos & Kolter, 2017)
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Our Strategy

* Step 1: train arbitrary decision-blind model fg (x)

* Step 2: compute gradients through arbitrary optimization problem to
obtain training data weights {w;}

» Step 3: re-train model fy (x) with weighted training data {x;, w;, ¥;}
* Step 4: run optimization problem with plug-in estimates
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Our Strategy

* Generality: only requires re-weighting observations in any data
science pipeline
e Can directly use any off-the-shelf ML package, no re-implementation

* Computational Tractability: only requires training predictive model
and solving optimization problem 2x

* Principled: directly approximates optimal decision loss
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Allocating Essential Meds



Products

* Child Health <5 years of age
* Amoxicillin 250mg, Dispersible, Tab
e Oral Rehydration Salts (ORS), Sachet (correlation to zinc)
e Zinc Sulphate 20mg, Tab (correlation to ORS)

* Maternal Health
* Oxytocin 101U, Inj, Amp
* Magnesium Sulphate 50%, Inj, 10ml, Amp
* Family Planning (adolescent health, women of child bearing age)
* Depot Medroxyprogestrone Acetate (Depo-Provera) 150 mg/ml, Pdr for Inj

* Ethinylestradiol & Levonorgestrel (Microgynon 30) 30mcg & 150mcg, Tab
 Jadelle- Levonorgestrel two rod 150mg, implant
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Data

e dhis2 forms from Jan 2019 to
July 2021 (31 months)

* Significant # of missing or
unreliable values

* 9,000+ separate time series,
each with only ~18 observations
oh average
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a Standard time Series forecaSting 2019-01 2019-05 2019-09 2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01
does very poorly
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Meta-Learning

\
Proxy data
from other
Di,(1,..,t) Din(L, ..., t) facilities &
products!

D D (1, .0 )
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Bias-Variance Tradeoff

* Train on proxy data: biased predictions, but low variance
* Train on target data: unbiased predictions, but high variance

A

167115 | @ - Meta-learning: combine
) ﬂproxy

both data sources —

S : .
& systematically accounting
Biarget for uncertainty in proxy —

o to improve predictions

dos/n,  Variance  dg2/n,

Bastani, Predicting with Proxies: Transfer Learning in High Dimension, Mgmt Sci (2020) %



Meta-Learning

* Leverage cross-product, cross-
facility correlations

e Data from other facilities /
products act as “proxy” data to
reduce variance at some cost of

bias [Bastani (2021), Bastani, Simchi-
Levi & Zhu (2022), Xu & Bastani (2022)]

 Random forest “meta-model”
forecasts jointly across all 8
products and ~1200 facilities
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Prediction Setup

Hand-Engineered Features:

 lagged demands for each product in that
facility for last 10 months

 month, year fixed effects

* rolling average of last 2/3/4/5/6/8/10 months
+ variance of last 3/6 months

Location-Product-Time Tuples

e facility region, type

Outcome: demand for product-facility at time ¢

Features
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Forecasting error on March 2021
relative to 3-month rolling average

Out-of-Sample Results

MACRO-EYES FORECASTING IMPROVEMENT
MACRO-EYES Al FORECASTING ERROR*

3 MONTH ROLLING AVERAGE FORECASTING ERROR*

IMPROVEMENT 37 %

Decision-blind

§ 5 5 random forest
= = - x improves
§ : demand

- forecasts by

34-59% on
held out test
set month

AMOXICILLIN JADELLE DEPO-PROVERA  MAGNESIUM SULFATE MICROGYNOM 30 OXYTOCIN
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Bare Bones Stochastic Optimization

* Goal: allocations a,, across all N districts
that minimizes cost

* Objective: cost of unmet demand at each
location
fn = max{$, — s, — ay, 0}

e Currentinventory s,,, demand ¢,

* Constraints: fixed budget b, each district
cannot hold more than its capacity c,,

* Efficient linear program with sample
average approximation

* Predictions: draw random demands fi(k) at
each facility based on estimated distribution
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Gradient of the LP Solution

* Perturb demand to avoid degeneracy: ¢,, + 1,,, where 77,, ~ N(0,07)

N N
Ve {arg min 2 Ey,_ [max{&, + 1, — s, — ap, 0}] subj.to 4= b}
¢ n=1 1

n=

* Lagrangian:

- Y
L(aA)—zIE il R — anO}”( 2 )

n=1 n=1
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Gradient of the LP Solution

 The first-order condition is

0 =—V, L(a*(£),A2(8) = P, T e SN ey
. A

CDF of n,, constant

» Taking the gradient with respect to &, yields an equation involving V¢ ay (),
solve to obtain

Ve (€)= Gpn + O (%)
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Gradient of the LP Objective

Mz

N
vm{ min » E, [max{&, + 0, — sp — an, 0}] subj.to Ean= }
a
n=1 =1

* Equivalently, ngL(a* (&), A" (E)), yielding

Ve L(a*(©), () =P, _[sm + & < & + 1] = Usy + iy < &

28



Now that we have the gradients...

* Use gradients to obtain approximate predictive model objective:

K N

: K k
arggmmz ]I(E,(1 ) = Sy + an) : ‘fe (98) = 12 )
=

k="181

* j.e., we up-weight training examples with unmet demand

* Classic ML “spends” capacity on predicting at facilities with low
stockout likelihood; we focus on facilities that are relevant to the OPT
objective
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* Compare unmet
demand for a fixed

Out-of-Sample Results e
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Essential Medicine
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Out-of-Sample Results
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Vaccine

Procedure
. Decision—Aware

. Decision-Blind

* Compare unmet
demand for a fixed
budget on a held-out
test set month
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End-to-End Results



Recall...
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Essential Medicine Product

Avg unfulfilled

demand across

the country is
42%!
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End-to-End Relative to Current Approach

DHIS2 Unmet Demand
Macro-Eyes Intelligent Allocation

Promising end-to-end
improvements using
Al/OR over current
system in Sierra Leone
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Reduce 20%-98% unmet

Essential Medicine Product dema nd for focal

Maximum allocation for each product is based on the # of total stock essential medicines
allocated from the Excel tool received for Quarter 1 2022

% of unmet demand= (unmet demand/actual demand)*100



Improvement by District

DHIS2 Unmet Demand
Macro-Eyes Intelligent Allocation

Reduce 28-90% of unmet
demand for essential
medicines across all districts
in Sierra Leone
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Many exciting questions...

* How to target collecting missing information that is most likely to
improve decision-aware learning?

* Forward-looking approach: decision-aware reinforcement learning?

* Demand forecasts used for other downstream decisions = decision-
aware learning with only a prior on decisions?

* Human-Al interface: help non-technical decision-makers incorporate
sudden changes like flooded roads, missing trucks, etc
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Thank you!

Questions? hamsab@wharton.upenn.edu




