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Global Health Allocations
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Distribute limited inventory of 100+ 
essential medicines across 1000+ 
health facilities in Sierra Leone

Highly uncertain demand, limited 
budgets à 42% of needs not fulfilled

Goal: use AI + OR to do better



Current Approach

• Health facilities “request” 3-month rolling average of demand
• Complex Excel allocation tool (32 tabs)
• Apply rationing parameters (differs based on product, facility type)
• Population/poverty modifiers
• Prioritize hospitals over other types of health facilities
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How does it work?
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Avg unfulfilled 
demand across 
the country is 

42%!



Predict-then-Optimize?

• Step 1: Train demand prediction model

• Step 2: Optimize allocations based on predictions

• Active area of research: end-to-end learning with constrained 
optimization [Kotary, Fioretto, Van Hentenryck, Wilder (2021)]
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Learning and Optimization

• Goal: Given response 𝑦 (e.g., today’s demand), compute decision 𝑧 (e.g., 
inventory to allocate) to minimize a known decision loss ℓ:

𝑧∗ 𝑦 = arg min
"

ℓ 𝑧; 𝑦

• Problem: Optimization parameters 𝑦 are unknown

• Strategy: Predict 𝑦 based on covariates 𝑥 (e.g., yesterday’s demand)
• Can be complex
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Learning and Optimization

• Training phase: Given examples 𝑥# , 𝑦#∗ , train a function 𝑓$ to 
predict 𝑦 given 𝑥:

/𝜃 = arg min
$

1
#

2ℓ 𝑓$ 𝑥# ; 𝑦#∗

• Testing phase: Given a new 𝑥, form prediction 𝑓$ 𝑥 (“predict”) and 
choose decision 𝑧∗ 3𝑦 (“optimize”)
• Key question: What prediction loss 2ℓ 3𝑦; 𝑦∗ to use in training?
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Learning and Optimization

• Decision-blind prediction loss: Use a standard loss such as MSE:

2ℓ%&' 3𝑦; 𝑦∗ = 3𝑦 − 𝑦∗ (

• Decision-aware prediction loss: Use the decision loss

2ℓ 3𝑦; 𝑦∗ = ℓ 𝑧∗ 3𝑦 ; 𝑦∗ = ℓ arg min" ℓ 𝑧; 3𝑦 ; 𝑦∗

• Problem: How to compute 2ℓ?
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Interested in…

• Generality: able to interface with complex data science + 
optimization pipelines
• Computational Tractability
• Principled: approximates optimal decision loss
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Prior Work - I

• [Bertsimas & Kallus (2018)] Cluster “nearby” observations (using 
CART or LOESS) to estimate conditional distribution 𝑦|𝑥 in SAA
• Not optimal: predictive model is the same regardless of opt problem
• Not computationally tractable for complex predictive models

• [Kallus & Mao (2022)] Specialized approach for random forests + SAA
• Not computationally tractable: every tree split requires re-solving 

optimization problem
• Not general: strategy specific to tree models and one unknown parameter 

vector per optimization
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Prior Work - II

• [Elmachtoub & Grigas (2021)] Approximate decision-aware prediction 
loss 2ℓ when ℓ is a LP and prediction 𝑓$ 𝑥 = 𝜃)𝑥 is linear
• Not general: strategy specific to linear models and known constraints

• [Wilder et al (2019a/b)] Backpropagate through decision loss
• Not general: prediction function 𝑓! 𝑥 must be differentiable
• Not computationally tractable: need to solve optimization problem at every

gradient step
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Our Strategy

• We can Taylor expand in 3𝑦 around 𝑦∗ (works well if 3𝑦 ≈ 𝑦∗)

ℓ 𝑧∗ 3𝑦 ; 𝑦∗ ≈ ℓ 𝑧∗ 𝑦∗ ; 𝑦∗ + ∇"ℓ 𝑧∗ 𝑦∗ ; 𝑦∗ )∇*𝑧∗ 𝑦∗ 3𝑦 − 𝑦∗

• First term (optimal performance) is constant and can be ignored
• Accounts for:
• Effect of prediction on decision
• Effect of decision on decision loss
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Our Strategy

• Prediction model objective is

arg min
$

1
#

∇"ℓ 𝑧∗ 𝑦#∗ ; 𝑦#∗ )∇*𝑧∗ 𝑦#∗ 𝑓$ 𝑥# − 𝑦#∗

• Can be interpreted as re-weighting training examples 𝑥# , 𝑦#∗

• Compute gradient through OPT objective and OPT decision
• Can be computed efficiently (Amos & Kolter, 2017)
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constant in 𝜃



Our Strategy

• Step 1: train arbitrary decision-blind model 𝑓$(𝑥)
• Step 2: compute gradients through arbitrary optimization problem to 

obtain training data weights 𝑤#
• Step 3: re-train model 𝑓$

,(𝑥) with weighted training data 𝑥# , 𝑤# , 𝑦#
• Step 4: run optimization problem with plug-in estimates
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Our Strategy

• Generality: only requires re-weighting observations in any data 
science pipeline
• Can directly use any off-the-shelf ML package, no re-implementation

• Computational Tractability: only requires training predictive model 
and solving optimization problem 2x
• Principled: directly approximates optimal decision loss
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Allocating Essential Meds
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Products

• Child Health <5 years of age
• Amoxicillin 250mg, Dispersible, Tab
• Oral Rehydration Salts (ORS), Sachet (correlation to zinc)
• Zinc Sulphate 20mg, Tab (correlation to ORS)

• Maternal Health
• Oxytocin 10IU, Inj, Amp
• Magnesium Sulphate 50%, Inj, 10ml, Amp

• Family Planning (adolescent health, women of child bearing age)
• Depot Medroxyprogestrone Acetate (Depo-Provera) 150 mg/ml, Pdr for Inj
• Ethinylestradiol & Levonorgestrel (Microgynon 30) 30mcg & 150mcg, Tab
• Jadelle- Levonorgestrel two rod 150mg, implant
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Data
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• dhis2 forms from Jan 2019 to 
July 2021 (31 months)
• Significant # of missing or 

unreliable values

• 9,000+ separate time series, 
each with only ~18 observations 
on average
• Standard time series forecasting 

does very poorly



Meta-Learning
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𝐷!,!(1, … , t) 𝐷!,#(1, … , 𝑡)
… 𝐷!,$(1, … , 𝑡)

𝐷%,!(1, … , t) 𝐷%,#(1, … , 𝑡)
… 𝐷%,$(1, … , 𝑡)

…… …
Proxy data 
from other 
facilities & 
products!



Bias-Variance Tradeoff

• Train on proxy data: biased predictions, but low variance
• Train on target data: unbiased predictions, but high variance

-𝜷𝒕𝒂𝒓𝒈𝒆𝒕

-𝜷𝒑𝒓𝒐𝒙𝒚

Variance

Bi
as

𝑑𝜎*+/𝑛*𝑑𝜎++/𝑛+

𝛿∗ +
+ Meta-learning: combine 

both data sources –
systematically accounting 
for uncertainty in proxy –
to improve predictions

21Bastani, Predicting with Proxies: Transfer Learning in High Dimension, Mgmt Sci (2020)



Meta-Learning

• Leverage cross-product, cross-
facility correlations
• Data from other facilities / 

products act as “proxy” data to 
reduce variance at some cost of 
bias [Bastani (2021), Bastani, Simchi-
Levi & Zhu (2022), Xu & Bastani (2022)]

• Random forest “meta-model” 
forecasts jointly across all 8 
products and ~1200 facilities
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Prediction Setup
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Hand-Engineered Features:
• lagged demands for each product in that 

facility for last 10 months
• month, year fixed effects
• rolling average of last 2/3/4/5/6/8/10 months 

+ variance of last 3/6 months
• facility region, type

Outcome: demand for product-facility at time 𝑡
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Out-of-Sample Results
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Decision-blind 
random forest 

improves 
demand 

forecasts by 
34-59% on 

held out test 
set month

Forecasting error on March 2021 
relative to 3-month rolling average



Bare Bones Stochastic Optimization

• Goal: allocations 𝑎"∗ across all 𝑁 districts 
that minimizes cost

• Objective: cost of unmet demand at each 
location

ℓ" = max 𝜉" − 𝑠" − 𝑎", 0
• Current inventory 𝒔𝒏, demand 𝝃𝒏

• Constraints: fixed budget 𝒃, each district 
cannot hold more than its capacity 𝒄𝒏

• Predictions: draw random demands 𝜉%
(') at 

each facility based on estimated distribution
25

* Efficient linear program with sample 
average approximation



Gradient of the LP Solution

• Perturb demand to avoid degeneracy: 𝜉6 + 𝜂6, where 𝜂6 ∼ 𝑁 0, 𝜎(

∇)! arg min
*

6
"+,

-

𝔼." max 𝜉" + 𝜂" − 𝑠" − 𝑎", 0 subj. to 6
"+,

-

𝑎" = 𝑏

• Lagrangian:

𝐿 𝑎, 𝜆 = 6
"+,

-

𝔼." max 𝜉" + 𝜂" − 𝑠" − 𝑎", 0 + 𝜆 𝑏 −6
"+,

-

𝑎"
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Gradient of the LP Solution

• The first-order condition is

0 = −∇*"𝐿 𝑎∗ 𝜉 , 𝜆∗ 𝜉 = ℙ." 𝑠" + 𝑎"
∗ 𝜉 ≤ 𝜉" + 𝜂" + 𝜆∗ 𝜉

• Taking the gradient with respect to 𝜉/ yields an equation involving ∇)!𝑎"
∗ 𝜉 , 

solve to obtain

∇)!𝑎"
∗ 𝜉 = 𝛿/," + 𝑂

1
𝑁
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Gradient of the LP Objective

∇)! min
*
6
"+,

-

𝔼." max 𝜉" + 𝜂" − 𝑠" − 𝑎", 0 subj. to 6
"+,

-

𝑎" = 𝑏

• Equivalently, ∇8!𝐿 𝑎∗ 𝜉 , 𝜆∗ 𝜉 , yielding

∇)!𝐿 𝑎∗ 𝜉 , 𝜆∗ 𝜉 = ℙ.! 𝑠/ + 𝑎/ ≤ 𝜉/ + 𝜂/ ≈ 𝕀 𝑠/ + 𝑎/ ≤ 𝜉/
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Now that we have the gradients…

• Use gradients to obtain approximate predictive model objective:

arg min
$

1
9:;

<

1
6:;

=

𝕀 𝜉6
(9) ≥ 𝑠6 + 𝑎6 ⋅ 𝑓$ 𝑥6 − 𝜉6

(9)

• i.e., we up-weight training examples with unmet demand
• Classic ML “spends” capacity on predicting at facilities with low 

stockout likelihood; we focus on facilities that are relevant to the OPT 
objective
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Out-of-Sample Results
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* Compare unmet 
demand for a fixed 

budget on a held-out 
test set month
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Out-of-Sample Results
* Compare unmet 

demand for a fixed 
budget on a held-out 

test set month
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End-to-End Results
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Recall…

33

Avg unfulfilled 
demand across 
the country is 

42%!



Promising end-to-end 
improvements using 
AI/OR over current 
system in Sierra Leone

Reduce 20%-98% unmet 
demand for focal 
essential medicinesMaximum allocation for each product is based on the # of total stock 

allocated from the Excel tool received for Quarter 1 2022

% of unmet demand= (unmet demand/actual demand)*100

End-to-End Relative to Current Approach



Reduce 28-90% of unmet 
demand for essential 
medicines across all districts 
in Sierra Leone

Improvement by District
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Goal to deploy in other 
countries like Mozambique, 
Cote d’Ivoire, Rwanda, 
Democratic Republic of 
Congo that use the same 
dhis2 forms



Many exciting questions…

• How to target collecting missing information that is most likely to 
improve decision-aware learning?

• Forward-looking approach: decision-aware reinforcement learning?

• Demand forecasts used for other downstream decisions à decision-
aware learning with only a prior on decisions?

• Human-AI interface: help non-technical decision-makers incorporate 
sudden changes like flooded roads, missing trucks, etc
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Thank you!

Questions? hamsab@wharton.upenn.edu


