The Statistical Complexity of Interactive Decision Making

Dylan Foster

Microsoft Research, New England

Based on work with Sham Kakade, Jian Qian, and Sasha Rakhlin

Data-driven decision making

Data-driven decision making

Many different problems and formulations

- Bandits (contextual, dueling, ...)
- Control
- Dynamic pricing
- Online optimization

- Reinforcement learning
- Dynamic treatments
- Allocation, assortment optimization, inventory management

Data-driven decision making

Many different problems and formulations

- Bandits (contextual, dueling, ...)
- Control
- Dynamic pricing
- Online optimization

- Reinforcement learning
- Dynamic treatments
- Allocation, assortment optimization, inventory management

Challenge:

Unified approach to developing algorithms with optimal sample complexity?

Outline

- Statistical Complexity of Decision Making: Challenges
- The Decision-Estimation Coefficient
 - Sample Complexity/Fundamental Limits
 - Algorithm Design
 - Illustrative Examples and Applications

For each round $t = 1, \ldots, T$:

- Learner selects decision $\pi^{(t)} \in \Pi$.
- Nature reveals reward $r^{(t)} \in \mathcal{R} \subseteq \mathbb{R}$ and observation $o^{(t)} \in \mathcal{O}$.

For each round $t = 1, \ldots, T$:

- Learner selects decision $\pi^{(t)} \in \Pi$.
- Nature reveals reward $r^{(t)} \in \mathcal{R} \subseteq \mathbb{R}$ and observation $o^{(t)} \in \mathcal{O}$.

Stochastic setting: Assume $(r^{(t)}, o^{(t)}) \sim M^*(\pi^{(t)})$ independently, where $M^*(\cdot)$ is the underlying model.

For each round $t = 1, \ldots, T$:

- Learner selects decision $\pi^{(t)} \in \Pi$.
- Nature reveals reward $r^{(t)} \in \mathcal{R} \subseteq \mathbb{R}$ and observation $o^{(t)} \in \mathcal{O}$.

Stochastic setting: Assume $(r^{(t)}, o^{(t)}) \sim M^*(\pi^{(t)})$ independently, where $M^*(\cdot)$ is the underlying model.

Realizability: Assume $M^* \in \mathcal{M}$, where \mathcal{M} is a known class (captures prior knowledge).

For each round $t = 1, \ldots, T$:

- Learner selects decision $\pi^{(t)} \in \Pi$.
- Nature reveals reward $r^{(t)} \in \mathcal{R} \subseteq \mathbb{R}$ and observation $o^{(t)} \in \mathcal{O}$.

Stochastic setting: Assume $(r^{(t)}, o^{(t)}) \sim M^*(\pi^{(t)})$ independently, where $M^*(\cdot)$ is the underlying model.

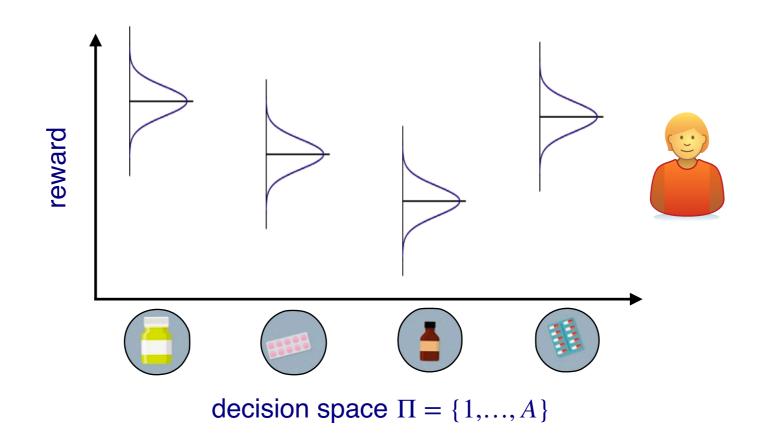
Realizability: Assume $M^* \in \mathcal{M}$, where \mathcal{M} is a known class (captures prior knowledge).

Regret:

$$\operatorname{\mathbf{Reg}}_{\mathsf{DM}}(T) \coloneqq \sum_{t=1}^{T} f^{M^{\star}}(\pi^{\star}) - f^{M^{\star}}(\pi^{(t)}),$$

where $f^{M}(\pi) \coloneqq \mathbb{E}^{M,\pi}[r], \pi^{\star} = \operatorname{arg\,max}_{\pi \in \Pi} f^{M^{\star}}(\pi).$

Example: Multi-Armed Bandit



In DMSO framework:

- $\mathcal{O} = \{ \varnothing \}$
- $\Pi = \{1, \ldots, A\}.$
- $\mathcal{M} =$ "all 1-subgaussian reward distributions" or similar

[Lai & Robbins '85, Burnetas & Katehakis '96, Auer et al. '02, Audibert & Bubeck '09, Garivier et al. '19]

Example: Structured Bandits

Linear bandits

- $\mathcal{O} = \{ \varnothing \}$
- $\Pi \subseteq \mathbb{R}^d$.
- $\mathcal{F}_{\mathcal{M}} \coloneqq \{f^{\scriptscriptstyle M} \mid M \in \mathcal{M}\} = \text{linear functions.}$

[Abe & Long '99, Auer '02, Dani et al. '08, Chu et al. '11, Abbasi-Yadkori et al. '11, ...]

Example: Structured Bandits

Linear bandits

- $\mathcal{O} = \{ \varnothing \}$
- $\Pi \subseteq \mathbb{R}^d$.
- $\mathcal{F}_{\mathcal{M}} \coloneqq \{f^{\scriptscriptstyle M} \mid M \in \mathcal{M}\} = \text{linear functions.}$

[Abe & Long '99, Auer '02, Dani et al. '08, Chu et al. '11, Abbasi-Yadkori et al. '11, ...]

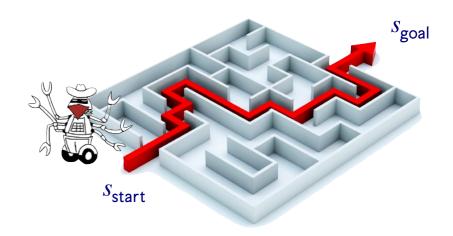
Nonparametric bandits

- $\mathcal{O} = \{ \varnothing \}$
- $\Pi \subseteq \mathbb{R}^d$.
- $\mathcal{F}_{\mathcal{M}} = \text{Lipschitz or Hölder functions.}$

[Kleinberg '04, Auer et al. '07, Kleinberg et al. '08, ...]

Episodic finite-horizon MDP:

- $M = \left\{ \mathcal{S}, \mathcal{A}, \{P_h^M\}_{h=1}^H, \{R_h^M\}_{h=1}^H, d_1 \right\}.$
- S: State space, A: Action space
- $P_h^M : S \times A \to \Delta(S)$: Transition distribution
- $R_h^M : S \times \mathcal{A} \to \Delta(\mathbb{R})$: Reward distribution
- d_1 : Initial state distribution

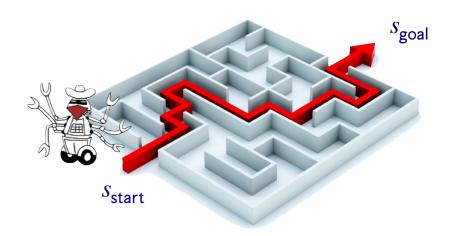


Episodic finite-horizon MDP:

- $M = \left\{ \mathcal{S}, \mathcal{A}, \{P_h^M\}_{h=1}^H, \{R_h^M\}_{h=1}^H, d_1 \right\}.$
- S: State space, A: Action space
- $P_h^M : S \times A \to \Delta(S)$: Transition distribution
- $R_h^M : S \times \mathcal{A} \to \Delta(\mathbb{R})$: Reward distribution
- d_1 : Initial state distribution

Dynamics for each episode: For h = 1, ..., H:

 $a_h = \pi_h(s_h), r_h \sim R_h^M(s_h, a_h), s_{h+1} \sim P_h^M(s_h, a_h)$ (with $s_1 \sim d_1$)



Episodic finite-horizon MDP:

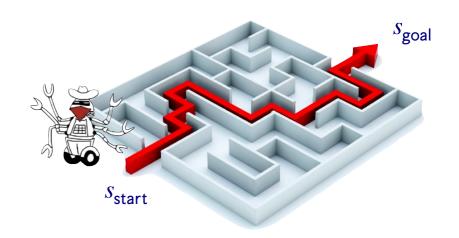
- $M = \left\{ \mathcal{S}, \mathcal{A}, \{P_h^M\}_{h=1}^H, \{R_h^M\}_{h=1}^H, d_1 \right\}.$
- S: State space, A: Action space
- $P_h^M : S \times A \to \Delta(S)$: Transition distribution
- $R_h^M : S \times \mathcal{A} \to \Delta(\mathbb{R})$: Reward distribution
- d_1 : Initial state distribution

Dynamics for each episode: For h = 1, ..., H:

$$a_h = \pi_h(s_h), r_h \sim R_h^M(s_h, a_h), s_{h+1} \sim P_h^M(s_h, a_h)$$
 (with $s_1 \sim d_1$)

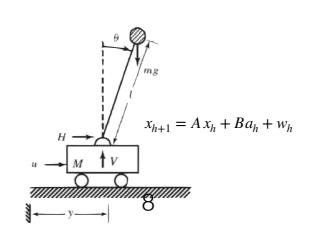
In DMSO framework:

- Π is a set of non-stationary policies $\pi = (\pi_1, \ldots, \pi_H)$, w/ $\pi_h : S \to A$.
- Observation $o^{(t)} = (s_1^{(t)}, a_1^{(t)}, r_1^{(t)}), \dots, (s_H^{(t)}, a_H^{(t)}, r_H^{(t)})$ when $\pi^{(t)}$ is executed in M^* .
- Reward $r^{(t)} = \sum_{h=1}^{H} r_h^{(t)}$.



Many examples of ${\cal M}$ for reinforcement learning:

- Finite State/Action (tabular)
- Low-Rank MDP [Jin et al. '20]
- Linear Quadratic Regulator (LQR)
 [Dean et al. '19]
- Linear Mixture MDP [Modi et al. '20, Ayoub et al. '20]
- State Aggregation [Li '09, Dong et al. '20]
- Block MDP [Jiang et al. '17]
- Factored MDP [Kearns & Koller '99]



- Predictive State Rrepresentations
 [Littman et al. '01]
- Bellman Complete
 [Munos '05, Zanette et al '20]
- Low Occupancy Complexity [Du et al. '21]
- Kernelized Nonlinear Regulator [Kakade et al. '20]

For each round $t = 1, \ldots, T$:

- Learner selects decision $\pi^{(t)} \in \Pi$.
- Nature reveals reward $r^{(t)} \in \mathbb{R}$ and observation $o^{(t)} \in \mathcal{O}$.

For each round $t = 1, \ldots, T$:

- Learner selects decision $\pi^{(t)} \in \Pi$.
- Nature reveals reward $r^{(t)} \in \mathbb{R}$ and observation $o^{(t)} \in \mathcal{O}$.

Questions

Statistical complexity: Is there a single complexity measure that can capture optimal regret (as a function of horizon T, class \mathcal{M})?

For each round $t = 1, \ldots, T$:

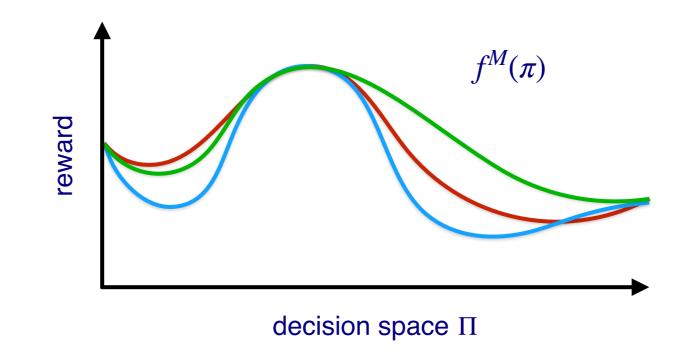
- Learner selects decision $\pi^{(t)} \in \Pi$.
- Nature reveals reward $r^{(t)} \in \mathbb{R}$ and observation $o^{(t)} \in \mathcal{O}$.

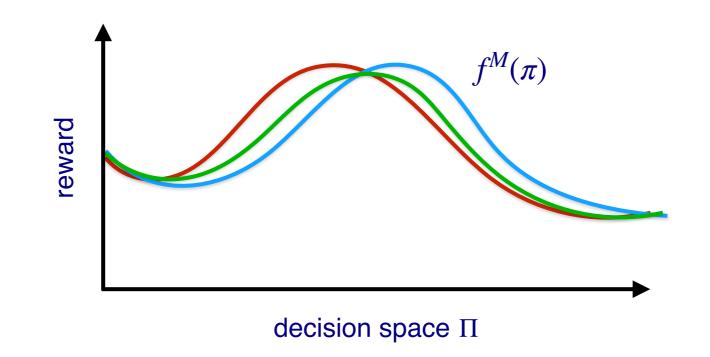
Questions

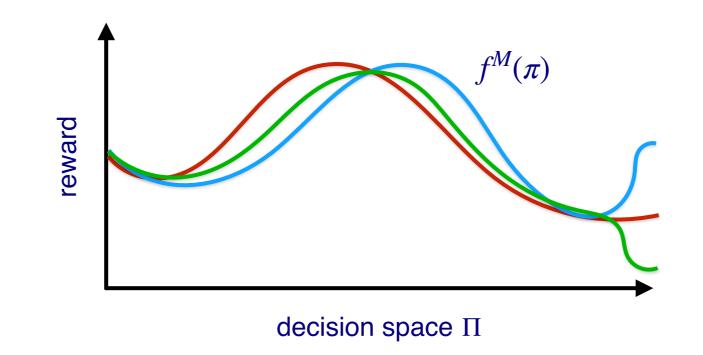
Statistical complexity: Is there a single complexity measure that can capture optimal regret (as a function of horizon T, class \mathcal{M})?

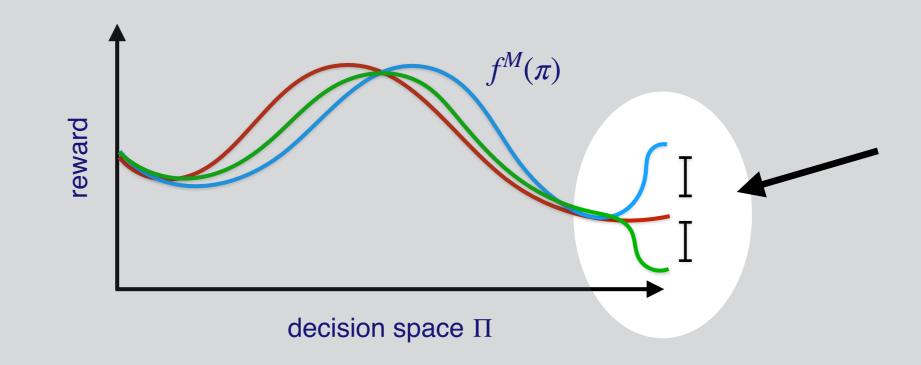
Algorithm design: General algorithmic principles that work for any class \mathcal{M} ?

Why is this problem challenging?









Reward structure and information sharing

- ✗ Hard: Many models, many optimal decisions.
- ✓ Easy: Many models, few optimal decisions.
- × Hard: Selecting π only reveals π 's own reward.
- Easy: Select single π reveals information about all rewards.

Reward structure and information sharing

- X Hard: Many models, many optimal decisions.
- ✓ Easy: Many models, few optimal decisions.
- × Hard: Selecting π only reveals π 's own reward.
- ✓ Easy: Select single π reveals information about all rewards.

Statistical complexity is tied to algorithm design

Reward structure and information sharing

- ✗ Hard: Many models, many optimal decisions.
- ✓ Easy: Many models, few optimal decisions.
- × Hard: Selecting π only reveals π 's own reward.
- ✓ Easy: Select single π reveals information about all rewards.

Statistical complexity is tied to algorithm design

Further issues

• Noise/observations can leak identity of true model.

Reward structure and information sharing

- X Hard: Many models, many optimal decisions.
- ✓ Easy: Many models, few optimal decisions.
- × Hard: Selecting π only reveals π 's own reward.
- ✓ Easy: Select single π reveals information about all rewards.

Statistical complexity is tied to algorithm design

Further issues

- Noise/observations can leak identity of true model.
- Handling large, structured decision/observation spaces (e.g., RL).

Can there be *single* complexity measure that captures the statistical complexity of interactive decision making?

Can there be *single* complexity measure that captures the statistical complexity of interactive decision making?

Our result: Yes!

Decision-Estimation Coefficient

- Recovers optimal rates* for bandits and RL.
- Comes with unified algorithm design principle.

Outline

- Statistical Complexity of Decision Making: Challenges
- The Decision-Estimation Coefficient
 - Sample Complexity/Fundamental Limits
 - Algorithm Design
 - Illustrative Examples and Applications

The Decision-Estimation Coefficient

For $\overline{M} \in \mathcal{M}$ and $\gamma > 0$, define

$$\operatorname{dec}_{\gamma}(\mathcal{M},\overline{M}) = \min_{p \in \Delta(\Pi)} \max_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[f^{M}(\pi_{M}^{\star}) - f^{M}(\pi) - \gamma \cdot D^{2}_{\operatorname{\mathsf{Hel}}}(M(\pi),\overline{M}(\pi)) \right],$$

where:

- $\pi_M^{\star} = \text{optimal decision for } M.$
- $D^2_{\mathsf{Hel}}(P,Q) \coloneqq \int (\sqrt{p(z)} \sqrt{q(z)})^2 dz$. (can use $D_{\mathsf{KL}}(P \parallel Q) \coloneqq \int p(z) \log(p(z)/q(z)) dz$)

The Decision-Estimation Coefficient

For $\overline{M} \in \mathcal{M}$ and $\gamma > 0$, define

$$\operatorname{dec}_{\gamma}(\mathcal{M},\overline{M}) = \min_{p \in \Delta(\Pi)} \max_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[\underbrace{f^{M}(\pi_{M}^{\star}) - f^{M}(\pi)}_{\text{regret of decision}} -\gamma \cdot D_{\operatorname{Hel}}^{2}(M(\pi),\overline{M}(\pi)) \right],$$

where:

- $\pi_M^{\star} = \text{optimal decision for } M.$
- $D^2_{\mathsf{Hel}}(P,Q) \coloneqq \int (\sqrt{p(z)} \sqrt{q(z)})^2 dz$. (can use $D_{\mathsf{KL}}(P \parallel Q) \coloneqq \int p(z) \log(p(z)/q(z)) dz$)

The Decision-Estimation Coefficient

For $\overline{M} \in \mathcal{M}$ and $\gamma > 0$, define

$$\operatorname{dec}_{\gamma}(\mathcal{M},\overline{M}) = \min_{p \in \Delta(\Pi)} \max_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[\underbrace{f^{M}(\pi_{M}^{\star}) - f^{M}(\pi)}_{\text{regret of decision}} - \gamma \cdot \underbrace{D^{2}_{\operatorname{Hel}}(M(\pi), \overline{M}(\pi))}_{\text{information gain for obs.}} \right],$$

where:

- $\pi_M^{\star} = \text{optimal decision for } M.$
- $D^2_{\mathsf{Hel}}(P,Q) \coloneqq \int (\sqrt{p(z)} \sqrt{q(z)})^2 dz$. (can use $D_{\mathsf{KL}}(P \parallel Q) \coloneqq \int p(z) \log(p(z)/q(z)) dz$)

The Decision-Estimation Coefficient

For $\overline{M} \in \mathcal{M}$ and $\gamma > 0$, define

$$\operatorname{dec}_{\gamma}(\mathcal{M},\overline{M}) = \min_{p \in \Delta(\Pi)} \max_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[\underbrace{f^{M}(\pi_{M}^{\star}) - f^{M}(\pi)}_{\text{regret of decision}} - \gamma \cdot \underbrace{D^{2}_{\operatorname{\mathsf{Hel}}}(M(\pi), \overline{M}(\pi))}_{\text{information gain for obs.}} \right],$$

where:

•
$$\pi_M^{\star} = \text{optimal decision for } M.$$

• $D^2_{\text{Hel}}(P,Q) \coloneqq \int (\sqrt{p(z)} - \sqrt{q(z)})^2 dz$. (can use $D_{\text{KL}}(P \parallel Q) \coloneqq \int p(z) \log(p(z)/q(z)) dz$)

$$\mathsf{dec}_{\gamma}(\mathcal{M}) \coloneqq \max_{\overline{M} \in \mathcal{M}} \mathsf{dec}_{\gamma}(\mathcal{M}, \overline{M}).$$

Generalizes:

- inverse gap weighting for bandits/contextual bandits [Abe & Long '99, F & Rakhlin '20]
- 2. information ratio [Russo & Van Roy '14, '18]

Localized version of DEC lower bounds regret for any problem

(for appropriate choice of γ)

Setting	DEC Lower Bound	Tight?
Multi-Armed Bandit	\sqrt{AT}	\checkmark
Multi-Armed Bandit w/ gap	A/Δ	\checkmark
Linear Bandit	\sqrt{dT}	$\checkmark (d\sqrt{T})$
Lipschitz Bandit	$T^{rac{d+1}{d+2}}$	✓
ReLU Bandit	2^d	\checkmark
Tabular RL	\sqrt{HSAT}	
Linear MDP	\sqrt{dT}	$\checkmark (d\sqrt{T})$
RL w/ linear Q^{\star}	2^d	
Deterministic RL w/ linear Q^{\star}	d	

Estimation-to-Decisions Meta-Algorithm (E2D)

Estimation-to-Decisions Meta-Algorithm (E2D)

For t = 1, ..., T:

• Get estimator $\widehat{M}^{(t)} \in \mathcal{M}$ from supervised estimation algorithm.

Estimation-to-Decisions Meta-Algorithm (E2D)

For t = 1, ..., T:

- Get estimator $\widehat{M}^{(t)} \in \mathcal{M}$ from supervised estimation algorithm.
- Solve min-max optimization problem:

$$p^{(t)} = \underset{p \in \Delta(\Pi)}{\operatorname{arg\,min}} \max_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \Big[f^{M}(\pi_{M}^{\star}) - f^{M}(\pi) - \gamma \cdot D^{2}_{\mathsf{Hel}} \big(M(\pi), \widehat{M}^{(t)}(\pi) \big) \Big].$$

(corresponds to $\operatorname{dec}_{\gamma}(\mathcal{M}, \widehat{M}^{(t)})$)

Estimation-to-Decisions Meta-Algorithm (E2D)

For t = 1, ..., T:

- Get estimator $\widehat{M}^{(t)} \in \mathcal{M}$ from supervised estimation algorithm.
- Solve min-max optimization problem:

$$p^{(t)} = \underset{p \in \Delta(\Pi)}{\operatorname{arg\,min}} \max_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \Big[f^{M}(\pi_{M}^{\star}) - f^{M}(\pi) - \gamma \cdot D^{2}_{\mathsf{Hel}}(M(\pi), \widehat{M}^{(t)}(\pi)) \Big].$$

(corresponds to $\operatorname{dec}_{\gamma}(\mathcal{M},\widehat{M}^{(t)})$)

• Sample $\pi^{(t)} \sim p^{(t)}$ and update estimation algorithm with $(r^{(t)}, o^{(t)})$.

E2D guarantee: Regret is controlled by estimation error + DEC

DEC: Regret bound

Define estimation error:

$$\mathbf{Est}_{\mathsf{Hel}}(T) \coloneqq \sum_{t=1}^{T} D^2_{\mathsf{Hel}}\big(M^{\star}(\pi^{(t)}), \widehat{M}^{(t)}(\pi^{(t)})\big).$$

Theorem (F., Kakade, Qian, Rakhlin '21)

The E2D algorithm (w/ parameter $\gamma > 0$) has

 $\operatorname{Reg}_{\mathsf{DM}}(T) \leq \operatorname{dec}_{\gamma}(\mathcal{M}) \cdot T + \gamma \cdot \operatorname{Est}_{\mathsf{Hel}}(T).$

DEC: Regret bound

Define estimation error:

$$\mathbf{Est}_{\mathsf{Hel}}(T) \coloneqq \sum_{t=1}^{T} D^2_{\mathsf{Hel}}\big(M^{\star}(\pi^{(t)}), \widehat{M}^{(t)}(\pi^{(t)})\big).$$

Theorem (F., Kakade, Qian, Rakhlin '21)

The E2D algorithm (w/ parameter $\gamma > 0$) has

 $\operatorname{\mathbf{Reg}}_{\mathsf{DM}}(T) \leq \operatorname{\mathsf{dec}}_{\gamma}(\mathcal{M}) \cdot T + \gamma \cdot \operatorname{\mathbf{Est}}_{\mathsf{Hel}}(T).$

Can guarantee $\mathbf{Est}_{\mathsf{Hel}}(T) \leq \mathsf{small}$ using online learning/sequential prediction. [Vovk'98, Cesa-Bianchi-Lugosi '06, Rakhlin-Sridharan '14,...]

Typically, $\mathbf{Est}_{\mathsf{Hel}}(T) \leq \operatorname{capacity}(\mathcal{M})$:

- $\mathbf{Est}_{\mathsf{Hel}}(T) = \log |\mathcal{M}|$ (finite).
- $\mathbf{Est}_{\mathsf{Hel}}(T) = \widetilde{O}(d)$ (linear/parametric in \mathbb{R}^d).

[Vovk '95]

[e.g., Cesa-Bianchi & Lugosi '06]

Theorem (F., Kakade, Qian, Rakhlin '21)

Under appropriate assumptions, any algorithm must have

$$\operatorname{Reg}_{\mathsf{DM}}(T) \gtrsim \max_{\gamma>0} \min\{\operatorname{dec}_{\gamma,\varepsilon_{\gamma}}(\mathcal{M}) \cdot T, \gamma\},\$$

Theorem (F., Kakade, Qian, Rakhlin '21)

Under appropriate assumptions, any algorithm must have

$$\operatorname{\mathbf{Reg}}_{\mathsf{DM}}(T) \gtrsim \max_{\gamma > 0} \min\{\operatorname{\mathsf{dec}}_{\gamma, \varepsilon_{\gamma}}(\mathcal{M}) \cdot T, \gamma\},\$$

and E2D achieves

$$\operatorname{\mathbf{Reg}}_{\mathsf{DM}}(T) \lesssim \max_{\gamma > 0} \min \{\operatorname{\mathsf{dec}}_{\gamma, \varepsilon_{\gamma}}(\mathcal{M}) \cdot T, \gamma \cdot \operatorname{\mathbf{Est}}_{\mathsf{Hel}}(T) \},$$

where $\operatorname{dec}_{\gamma,\varepsilon_{\gamma}}(\mathcal{M})$ is a "localized" variant of the DEC.

Theorem (F., Kakade, Qian, Rakhlin '21)

Under appropriate assumptions, any algorithm must have

$$\operatorname{Reg}_{\mathsf{DM}}(T) \gtrsim \max_{\gamma > 0} \min \{\operatorname{dec}_{\gamma, \varepsilon_{\gamma}}(\mathcal{M}) \cdot T, \gamma \},$$

and E2D achieves

$$\operatorname{\mathbf{Reg}}_{\mathsf{DM}}(T) \lesssim \max_{\gamma > 0} \min \{\operatorname{\mathsf{dec}}_{\gamma, \varepsilon_{\gamma}}(\mathcal{M}) \cdot T, \gamma \cdot \operatorname{\mathbf{Est}}_{\mathsf{Hel}}(T) \},$$

where $\operatorname{dec}_{\gamma,\varepsilon_{\gamma}}(\mathcal{M})$ is a "localized" variant of the DEC.

Example: Multi-armed bandit w/ $\Pi = \{1, \ldots, A\}$:

$$\operatorname{dec}_{\gamma,\varepsilon_{\gamma}}(\mathcal{M}) \propto \frac{A}{\gamma} \quad \Longrightarrow \quad \operatorname{\mathbf{Reg}}_{\mathsf{DM}}(T) \geq \max_{\gamma>0} \min\left\{\frac{AT}{\gamma}, \gamma\right\} = \sqrt{AT}.$$

Theorem (F., Kakade, Qian, Rakhlin '21)

Under appropriate assumptions, any algorithm must have

$$\operatorname{\mathbf{Reg}}_{\mathsf{DM}}(T) \gtrsim \max_{\gamma > 0} \min\{\operatorname{\mathsf{dec}}_{\gamma, \varepsilon_{\gamma}}(\mathcal{M}) \cdot T, \gamma\},\$$

and E2D achieves

$$\operatorname{\mathbf{Reg}}_{\mathsf{DM}}(T) \lesssim \max_{\gamma > 0} \min \{\operatorname{\mathsf{dec}}_{\gamma, \varepsilon_{\gamma}}(\mathcal{M}) \cdot T, \gamma \cdot \operatorname{\mathbf{Est}}_{\mathsf{Hel}}(T) \},$$

where $\operatorname{dec}_{\gamma,\varepsilon_{\gamma}}(\mathcal{M})$ is a "localized" variant of the DEC.

Characterization for learnability:

Suppose \mathcal{M} is convex and has bounded estimation complexity.

Sublinear regret is possible iff $\lim_{\gamma \to \infty} \gamma^p \cdot \operatorname{dec}_{\gamma}(\mathcal{M}) = 0$ for some p > 0.

Technical remarks

Why Hellinger distance?

If all $M \in \mathcal{M}$ admit densities bounded above by B, can derive similar results using DEC with KL divergence, with extra $\log(B)$ factors.

Technical remarks

Why Hellinger distance?

If all $M \in \mathcal{M}$ admit densities bounded above by B, can derive similar results using DEC with KL divergence, with extra $\log(B)$ factors.

Depending on assumptions, various gaps between upper and lower bounds (and opportunities for improvement)

- Localization radius
- Convex \mathcal{M} vs. general \mathcal{M} .
- In-expectation vs. in-probability.
- $\mathbf{Est}_{\mathsf{Hel}}(T)$ vs. weaker notions of estimation error

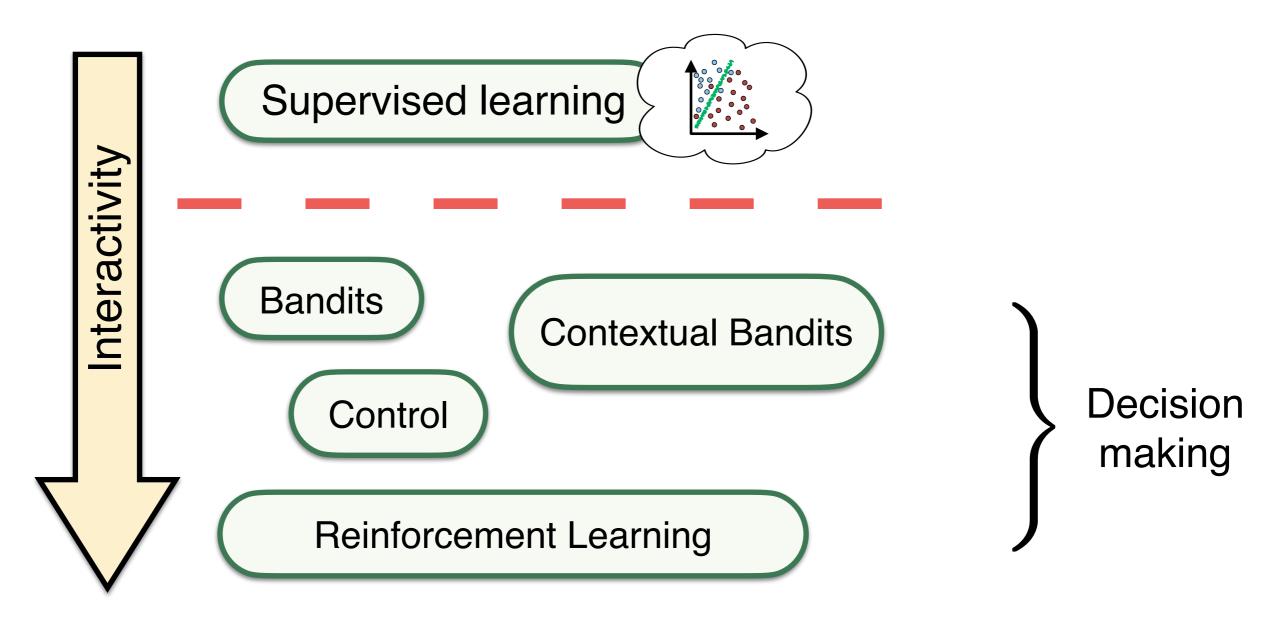
See paper for more details.

DEC and E2D: Summary

Bridges learning and decision making!

Use any out-of-the-box supervised estimation algorithm for \mathcal{M} .

 \implies E2D takes care of the rest.

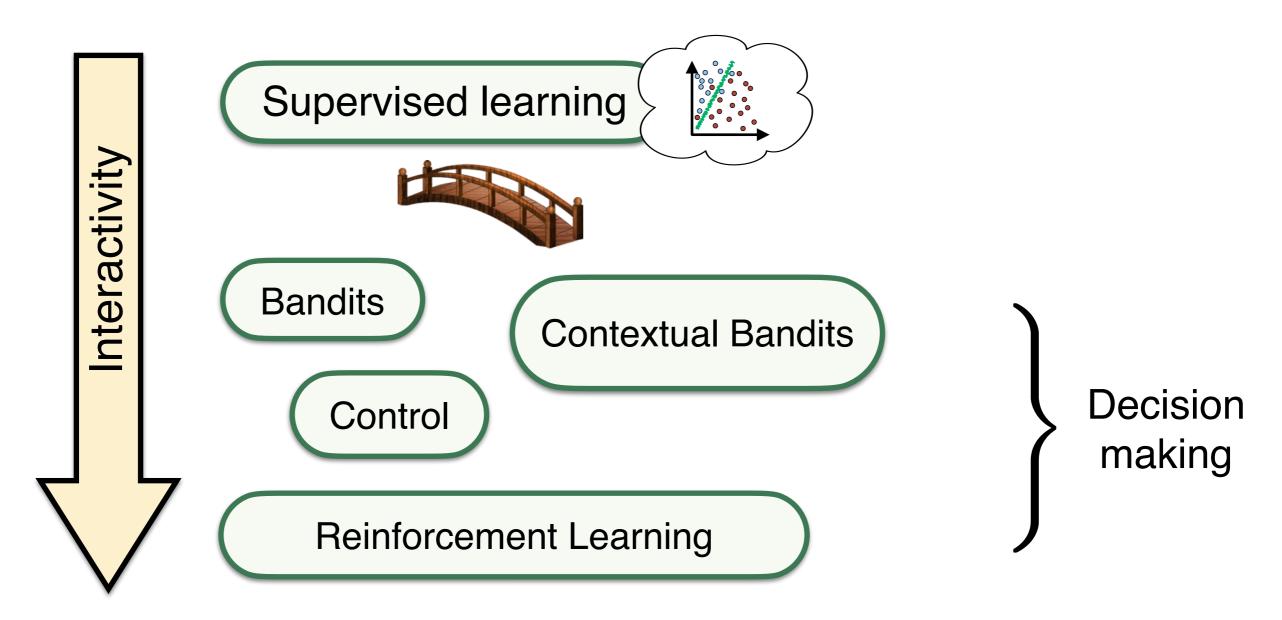


DEC and E2D: Summary

Bridges learning and decision making!

Use any out-of-the-box supervised estimation algorithm for \mathcal{M} .

 \implies E2D takes care of the rest.



Connection to statistical estimation

Modulus of Continuity [Donoho & Liu '87, '91, Juditsky-Nemirovski '09, Polyanskiy-Wu '19]

$$\omega_{\varepsilon}(\mathcal{M},\overline{M}) \coloneqq \max_{M \in \mathcal{M}} \left\{ \left| f^{M} - f^{\overline{M}} \right| \mid D^{2}_{\mathsf{Hel}}(M,\overline{M}) \leq \varepsilon^{2} \right\}$$

Gives lower bounds (in some cases, upper bounds) on rates for nonparametric functional estimation.

DEC extends classical theory of statistical estimation [Le Cam '73] to interactive decision making (in a general setting).

Related complexity measures

Information ratio

[Russo & Van Roy '14, '18, Lattimore & Zimmert '19, Lattimore & György '20]

- Original version always upper bounds DEC; arbitrarily larger in general.
- Bayesian analogue of DEC can be related to generalized information ratio from [Lattimore & György '20] if (i) class \mathcal{M} is convex, (ii) we use KL instead of Hellinger.

Graves-Lai complexity measure

[Graves & Lai '99, Combes et al. '17, Jun & Zhang '20, ...]

- Closely related to DEC, but (i) constrained (ii) only considers regret under \overline{M} .
- Characterizes optimal asymptotic instance-dependent regret.
- Does not capture minimax rates with finite samples.

Outline

- Statistical Complexity of Decision Making: Challenges
- The Decision-Estimation Coefficient
 - Sample Complexity/Fundamental Limits
 - Algorithm Design
 - Illustrative Examples and Applications

DEC: Illustrative Examples

Examples

Capturing complexity of reward-based feedback

- 1. Multi-armed bandit
- 2. Full information
- 3. Structured bandits

Information-theoretic considerations

4. Bandits with information leakage

Incorporating observations

5. Tabular RL

Additional results

RL overview

DEC: Illustrative Examples

Examples

Capturing complexity of reward-based feedback

- 1. Multi-armed bandit
- 2. Full information
- 3. Structured bandits
- Information-theoretic considerations
 - 4. Bandits with information leakage
- Incorporating observations
 - 5. Tabular RL

Additional results

• **RL** overview

Setup: $\Pi = \{1, \ldots, A\}$, $\mathcal{O} = \{\emptyset\}$, $\mathcal{M} = \text{all 1-subgaussian reward distributions.}$

Mean rewards act as sufficient statistic; replace Hellinger with squared error.

$$\operatorname{dec}_{\gamma}(\mathcal{M},\overline{M}) = \min_{p \in \Delta(\Pi)} \max_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[f^{M}(\pi_{M}^{\star}) - f^{M}(\pi) - \gamma \cdot D^{2}_{\operatorname{\mathsf{Hel}}} \left(M(\pi), \overline{M}(\pi) \right) \right]$$

Setup: $\Pi = \{1, \ldots, A\}$, $\mathcal{O} = \{\emptyset\}$, $\mathcal{M} = \text{all 1-subgaussian reward distributions.}$

Mean rewards act as sufficient statistic; replace Hellinger with squared error.

$$\operatorname{dec}_{\gamma}^{\operatorname{Sq}}(\mathcal{M},\overline{M}) \coloneqq \min_{p \in \Delta(\Pi)} \max_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[f^{M}(\pi_{M}^{\star}) - f^{M}(\pi) - \gamma \cdot (f^{M}(\pi) - f^{\overline{M}}(\pi))^{2} \right]$$

Setup: $\Pi = \{1, \ldots, A\}$, $\mathcal{O} = \{\emptyset\}$, $\mathcal{M} =$ all 1-subgaussian reward distributions.

Mean rewards act as sufficient statistic; replace Hellinger with squared error.

$$\operatorname{dec}_{\gamma}^{\operatorname{Sq}}(\mathcal{M},\overline{M}) \coloneqq \min_{p \in \Delta(\Pi)} \max_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[f^{M}(\pi_{M}^{\star}) - f^{M}(\pi) - \gamma \cdot (f^{M}(\pi) - f^{\overline{M}}(\pi))^{2} \right]$$

Applying the main theorem:

$$\operatorname{dec}_{\gamma}(\mathcal{M}) \propto \frac{A}{\gamma} \quad \Longrightarrow \quad \operatorname{Reg}_{\mathsf{DM}}(T) \geq \max_{\gamma > 0} \min\left\{\frac{AT}{\gamma}, \gamma\right\} = \sqrt{AT}.$$

Upper bound approach #1: Inverse Gap Weighting [Abe & Long '99], [F & Rakhlin '20].

Given $\overline{M} \in \mathcal{M}$, $\gamma > 0$, set

$$p(\pi) = \frac{1}{\lambda + \gamma \cdot (f^{\overline{M}}(\pi_{\overline{M}}^{\star}) - f^{\overline{M}}(\pi))},$$

w/ $\lambda > 0$ chosen such that $\sum_{\pi} p(\pi) = 1$.

Upper bound approach #1: Inverse Gap Weighting [Abe & Long '99], [F & Rakhlin '20].

Given $\overline{M} \in \mathcal{M}$, $\gamma > 0$, set

$$p(\pi) = \frac{1}{\lambda + \gamma \cdot (f^{\overline{M}}(\pi_{\overline{M}}^{\star}) - f^{\overline{M}}(\pi))},$$

w/ $\lambda > 0$ chosen such that $\sum_{\pi} p(\pi) = 1$.

- *Exact* minimizer for $\operatorname{dec}_{\gamma}^{\operatorname{Sq}}(\mathcal{M}, \overline{M})$; leads to $\frac{A}{\gamma}$ bound.
- Large $\gamma \implies$ exploit; small $\gamma \implies$ explore.
- E2D w/ IGW recovers SquareCB algo. for contextual bandits [F & Rakhlin '20].

Approach #2: Posterior Sampling

[Thompson '33, Agrawal-Goyal '13 Russo-Van Roy '14]

Approach #2: Posterior Sampling

[Thompson '33, Agrawal-Goyal '13 Russo-Van Roy '14]

By minimax theorem, have

$$\operatorname{dec}_{\gamma}^{\operatorname{Sq}}(\mathcal{M},\overline{M}) = \min_{p \in \Delta(\Pi)} \max_{M \in \mathcal{M}} \mathbb{E}_{\pi \sim p} \left[f^{M}(\pi_{M}^{\star}) - f^{M}(\pi) - \gamma \cdot \left(f^{M}(\pi) - f^{\overline{M}}(\pi) \right)^{2} \right].$$

Approach #2: Posterior Sampling

[Thompson '33, Agrawal-Goyal '13 Russo-Van Roy '14]

By minimax theorem, have

$$\operatorname{dec}_{\gamma}^{\operatorname{Sq}}(\mathcal{M},\overline{M}) = \min_{p \in \Delta(\Pi)} \max_{\mu \in \Delta(\mathcal{M})} \mathbb{E}_{M \sim \mu} \mathbb{E}_{\pi \sim p} \left[f^{M}(\pi_{M}^{\star}) - f^{M}(\pi) - \gamma \cdot (f^{M}(\pi) - f^{\overline{M}}(\pi))^{2} \right].$$

Approach #2: Posterior Sampling

[Thompson '33, Agrawal-Goyal '13 Russo-Van Roy '14]

By minimax theorem, have

$$\operatorname{dec}_{\gamma}^{\operatorname{Sq}}(\mathcal{M},\overline{M}) = \max_{\boldsymbol{\mu}\in\Delta(\mathcal{M})} \min_{p\in\Delta(\Pi)} \mathbb{E}_{\boldsymbol{M}\sim\boldsymbol{\mu}} \mathbb{E}_{\pi\sim p} \left[f^{M}(\pi_{M}^{\star}) - f^{M}(\pi) - \gamma \cdot (f^{M}(\pi) - f^{\overline{M}}(\pi))^{2} \right].$$

Approach #2: Posterior Sampling

[Thompson '33, Agrawal-Goyal '13 Russo-Van Roy '14]

By minimax theorem, have

$$\operatorname{dec}_{\gamma}^{\operatorname{Sq}}(\mathcal{M},\overline{M}) = \max_{\boldsymbol{\mu}\in\Delta(\mathcal{M})} \min_{p\in\Delta(\Pi)} \mathbb{E}_{\boldsymbol{M}\sim\boldsymbol{\mu}} \mathbb{E}_{\boldsymbol{\pi}\sim p} \left[f^{M}(\boldsymbol{\pi}_{M}^{\star}) - f^{M}(\boldsymbol{\pi}) - \gamma \cdot (f^{M}(\boldsymbol{\pi}) - f^{\overline{M}}(\boldsymbol{\pi}))^{2} \right].$$

Posterior sampling algorithm: Sample $M \sim \mu$, play π_M^{\star} .

• Leads to $\operatorname{dec}_{\gamma}^{\operatorname{Sq}}(\mathcal{M}, \overline{M}) \leq \frac{A}{\gamma}$; non-constructive.

Example #2: Full Information

Same as bandits: $\Pi = \{1, \ldots, A\}$, $\mathcal{R} = [0, 1]$, but all rewards revealed:

 $o = (r(\pi))_{\pi \in \Pi}.$

Example #2: Full Information

Same as bandits: $\Pi = \{1, \ldots, A\}$, $\mathcal{R} = [0, 1]$, but all rewards revealed:

 $o = (r(\pi))_{\pi \in \Pi}.$

Computing the DEC:

- Upper bound: $\operatorname{dec}_{\gamma}(\mathcal{M}, \overline{M}) \leq \frac{1}{\gamma}$ (greedy suffices)
- Lower bound: $\operatorname{dec}_{\gamma}(\mathcal{M}) \geq \frac{1}{\gamma}$ (playing any decision reveals info about all others).

Applying the main theorem:

$$\operatorname{dec}_{\gamma}(\mathcal{M}) \propto \frac{1}{\gamma} \quad \Longrightarrow \quad \operatorname{Reg}_{\mathsf{DM}}(T) \geq \max_{\gamma > 0} \min\left\{\frac{T}{\gamma}, \gamma\right\} = \sqrt{T}.$$

Example #2: Full Information

Same as bandits: $\Pi = \{1, \ldots, A\}$, $\mathcal{R} = [0, 1]$, but all rewards revealed:

 $o = (r(\pi))_{\pi \in \Pi}.$

Computing the DEC:

- Upper bound: $\operatorname{dec}_{\gamma}(\mathcal{M}, \overline{M}) \leq \frac{1}{\gamma}$ (greedy suffices)
- Lower bound: $\operatorname{dec}_{\gamma}(\mathcal{M}) \geq \frac{1}{\gamma}$ (playing any decision reveals info about all others).

Applying the main theorem:

$$\operatorname{dec}_{\gamma}(\mathcal{M}) \propto \frac{1}{\gamma} \quad \Longrightarrow \quad \operatorname{Reg}_{\mathsf{DM}}(T) \geq \max_{\gamma > 0} \min\left\{\frac{T}{\gamma}, \gamma\right\} = \sqrt{T}.$$

Intuition: Big offset from $D^2_{\text{Hel}}(M(\pi), \overline{M}(\pi))$ regardless of how π is chosen.

Example #3: Structured Bandits

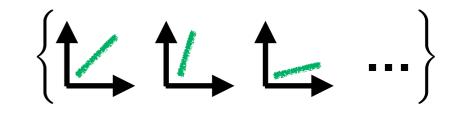
Bandits and full information lie at two extremes w.r.t. information sharing.

Example #3: Structured Bandits

Bandits and full information lie at two extremes w.r.t. information sharing.

Linear bandits [Auer '02, Dani et al. '08, Chu et al. '11, Abbasi-Yadkori et al. '11]

- $\mathcal{O} = \{ \varnothing \}$
- $\Pi \subseteq \mathbb{R}^d$.
- $\mathcal{F}_{\mathcal{M}} \coloneqq \{f^M \mid M \in \mathcal{M}\} = \text{linear functions.}$



Example #3: Structured Bandits

Bandits and full information lie at two extremes w.r.t. information sharing.

Linear bandits [Auer '02, Dani et al. '08, Chu et al. '11, Abbasi-Yadkori et al. '11]

- $\mathcal{O} = \{ \varnothing \}$
- $\Pi \subseteq \mathbb{R}^d$.
- $\mathcal{F}_{\mathcal{M}} \coloneqq \{f^M \mid M \in \mathcal{M}\} = \text{linear functions.}$

$$\left\{ \uparrow \downarrow \uparrow \downarrow \uparrow \dots \right\}$$

$$\operatorname{dec}_{\gamma}^{\operatorname{Sq}}(\mathcal{M}) \propto \frac{d}{\gamma} \quad \Longrightarrow \quad \operatorname{Reg}_{\mathsf{DM}}(T) \geq \max_{\gamma > 0} \min\left\{\frac{Td}{\gamma}, \gamma\right\} = \sqrt{dT}.$$

Example #3: Structured Bandits

Bandits and full information lie at two extremes w.r.t. information sharing.

Linear bandits [Auer '02, Dani et al. '08, Chu et al. '11, Abbasi-Yadkori et al. '11]

- $\mathcal{O} = \{ \varnothing \}$ • $\Pi \subseteq \mathbb{R}^d$.
- $\mathcal{F}_{\mathcal{M}} \coloneqq \{f^M \mid M \in \mathcal{M}\} = \text{linear functions.}$

$$\left\{ \uparrow \downarrow \uparrow \downarrow \uparrow \dots \right\}$$

$$\operatorname{dec}_{\gamma}^{\operatorname{Sq}}(\mathcal{M}) \propto \frac{d}{\gamma} \quad \Longrightarrow \quad \operatorname{Reg}_{\mathsf{DM}}(T) \geq \max_{\gamma > 0} \min\left\{\frac{Td}{\gamma}, \gamma\right\} = \sqrt{dT}.$$

Many classes have similar $\operatorname{dec}_{\gamma}(\mathcal{M}) = \frac{\operatorname{eff-dim}}{\gamma}$ scaling (cvx. bandits, generalized linear, ...)

Example #3: Structured Bandits

Bandits and full information lie at two extremes w.r.t. information sharing.

Linear bandits [Auer '02, Dani et al. '08, Chu et al. '11, Abbasi-Yadkori et al. '11]

- $\mathcal{O} = \{\emptyset\}$
- $\Pi \subseteq \mathbb{R}^d$.
- $\mathcal{F}_{\mathcal{M}} \coloneqq \{f^M \mid M \in \mathcal{M}\} = \text{linear functions.}$

$$\left\{ \uparrow \downarrow \uparrow \downarrow \uparrow \dots \right\}$$

$$\operatorname{dec}_{\gamma}^{\operatorname{Sq}}(\mathcal{M}) \propto \frac{d}{\gamma} \quad \Longrightarrow \quad \operatorname{Reg}_{\mathsf{DM}}(T) \geq \max_{\gamma > 0} \min\left\{\frac{Td}{\gamma}, \gamma\right\} = \sqrt{dT}.$$

Many classes have similar $\frac{\det_{\gamma}(\mathcal{M})}{\gamma} = \frac{\det_{\gamma}(\mathcal{M})}{\gamma}$ scaling (cvx. bandits, generalized linear, ...)

Nonparametric bandits [Kleinberg '04, Auer et al. '07, Kleinberg et al. '08, ...]

- $\mathcal{O} = \{ \varnothing \}$
- $\Pi \subseteq \mathbb{R}^d$.
- $\mathcal{F}_{\mathcal{M}} = \text{Lipschitz functions.}$

$$\operatorname{dec}_{\gamma}^{\operatorname{Sq}}(\mathcal{M}) \propto \frac{1}{\gamma^{\frac{1}{d+1}}} \quad \Longrightarrow \quad \operatorname{\mathbf{Reg}}_{\mathsf{DM}}(T) \geq T^{\frac{d+1}{d+2}}.$$

DEC: Illustrative Examples

Examples

• Capturing complexity of reward-based feedback

- 1. Multi-armed bandit
- 2. Full information
- 3. Structured bandits

Information-theoretic considerations

- 4. Bandits with information leakage
- Incorporating observations
 - 5. Tabular RL

Additional results

• **RL overview**

For examples so far, only *mean reward function* mattered.

For examples so far, only *mean reward function* mattered.

Another bandit variant: $\Pi = \{1, \ldots, A\}$, $\mathcal{O} = \{\varnothing\}$, for all $M \in \mathcal{M}$:

$$M(\pi) \coloneqq \begin{cases} \operatorname{Ber}(1/2 + \varepsilon), & \pi = \pi_M^{\star}, \\ \mathcal{N}(1/2, 1), & \pi \neq \pi_M^{\star}, \end{cases}$$

For examples so far, only mean reward function mattered.

Another bandit variant: $\Pi = \{1, \ldots, A\}$, $\mathcal{O} = \{\varnothing\}$, for all $M \in \mathcal{M}$:

$$M(\pi) \coloneqq \begin{cases} \operatorname{Ber}(1/2 + \varepsilon), & \pi = \pi_M^{\star}, \\ \mathcal{N}(1/2, 1), & \pi \neq \pi_M^{\star}, \end{cases}$$

Computing the DEC:

 $\operatorname{dec}_{\gamma}(\mathcal{M}) \propto \mathbb{I}\{\gamma \leq A/2\} \quad \Longrightarrow \quad \operatorname{\mathbf{Reg}}_{\mathsf{DM}}(T) \gtrsim A.$

(compare to \sqrt{AT} for MAB)

For examples so far, only *mean reward function* mattered.

Another bandit variant: $\Pi = \{1, \ldots, A\}$, $\mathcal{O} = \{\varnothing\}$, for all $M \in \mathcal{M}$:

$$M(\pi) \coloneqq \begin{cases} \operatorname{Ber}(1/2 + \varepsilon), & \pi = \pi_M^{\star}, \\ \mathcal{N}(1/2, 1), & \pi \neq \pi_M^{\star}, \end{cases}$$

Computing the DEC:

$$\operatorname{dec}_{\gamma}(\mathcal{M}) \propto \mathbb{I}\{\gamma \leq A/2\} \implies \operatorname{Reg}_{\mathsf{DM}}(T) \gtrsim A.$$
(compare to \sqrt{AT} for MAB)

Hellinger (information-theoretic divergence) strongly distinguishes changes in distribution.

 $D^2_{\text{Hel}}(M(\pi), \overline{M}(\pi)) \propto \mathbb{I}\{\pi = \pi_M^{\star}\}, \text{ while } (f^M(\pi) - f^{\overline{M}}(\pi))^2 \text{ depends on scale.}$

Generalizing further, can encode arbitrary auxiliary information in lower bits of reward signal.

DEC: Illustrative Examples

Examples

• Capturing complexity of reward-based feedback

- 1. Multi-armed bandit
- 2. Full information
- 3. Structured bandits

Information-theoretic considerations

4. Bandits with information leakage

Incorporating observations

5. Tabular RL

Additional results

• **RL overview**

Setup:

- \mathcal{M} : Episodic horizon-H MDPs with $|\mathcal{S}| = S$, $|\mathcal{A}| = A$, $\mathcal{R} = [0, 1]$.
- $\Pi = \{ \text{non-stationary policies } \pi_h : S \to A \}.$
- $o = (s_1, a_1, r_1), \dots, (s_H, a_H, r_H).$

Setup:

- \mathcal{M} : Episodic horizon-H MDPs with $|\mathcal{S}| = S$, $|\mathcal{A}| = A$, $\mathcal{R} = [0, 1]$.
- $\Pi = \{ \text{non-stationary policies } \pi_h : S \to A \}.$
- $o = (s_1, a_1, r_1), \dots, (s_H, a_H, r_H).$

Lower bound:

$$\operatorname{dec}_{\gamma}(\mathcal{M}) \ge \frac{HSA}{\gamma} \implies \operatorname{Reg}_{\mathsf{DM}}(T) \ge \sqrt{HSAT}.$$

Setup:

- \mathcal{M} : Episodic horizon-H MDPs with $|\mathcal{S}| = S$, $|\mathcal{A}| = A$, $\mathcal{R} = [0, 1]$.
- $\Pi = \{ \text{non-stationary policies } \pi_h : S \to A \}.$
- $o = (s_1, a_1, r_1), \dots, (s_H, a_H, r_H).$

Lower bound:

$$\operatorname{dec}_{\gamma}(\mathcal{M}) \geq \frac{HSA}{\gamma} \quad \Longrightarrow \quad \operatorname{\mathbf{Reg}}_{\mathsf{DM}}(T) \geq \sqrt{HSAT}.$$

Upper bounds:

• $\operatorname{dec}_{\gamma}(\mathcal{M}, \overline{M}) \lesssim \frac{H^3 SA}{\gamma}$ via *Policy-Cover Inverse Gap Weighting* (PC-IGW).

(new, efficient algorithm!)

• $\operatorname{dec}_{\gamma}(\mathcal{M}, \overline{M}) \lesssim \frac{H^2 S A}{\gamma}$ via posterior sampling.

Incorporating observations is critical!

Policy Cover Inverse Gap Weighting

Idea: Apply inverse gap weighting to small set of representative policies.

Policy Cover Inverse Gap Weighting

Given tabular MDP $\overline{M} \in \mathcal{M}$, $\gamma > 0$:

• For each $h \in [H]$, $s \in S$, $a \in A$, compute

$$\pi_{h,s,a} \coloneqq \underset{\pi}{\arg\max} \frac{\mathbb{P}^{\overline{M},\pi}(s_h = s, a_h = a)}{1 + \gamma \cdot (f^{\overline{M}}(\pi_{\overline{M}}^{\star}) - f^{\overline{M}}(\pi))}$$

Policy cover: $\Psi \coloneqq \{\pi_{\overline{M}}^{\star}\} \cup \{\pi_{h,s,a}\}_{h \in [H], s \in S, a \in A}$.

Policy Cover Inverse Gap Weighting

Given tabular MDP $\overline{M} \in \mathcal{M}, \gamma > 0$:

• For each $h \in [H]$, $s \in S$, $a \in A$, compute

$$\pi_{h,s,a} \coloneqq \underset{\pi}{\arg\max} \frac{\mathbb{P}^{\overline{M},\pi}(s_h = s, a_h = a)}{1 + \gamma \cdot (f^{\overline{M}}(\pi_{\overline{M}}^{\star}) - f^{\overline{M}}(\pi))}$$

Policy cover: $\Psi \coloneqq {\{\pi_{\overline{M}}^{\star}\} \cup {\{\pi_{h,s,a}\}_{h \in [H], s \in S, a \in A}}$.

• For each $\pi \in \Psi$, set

$$p(\pi) = \frac{1}{\lambda + \gamma \cdot (f^{\overline{M}}(\pi_{\overline{M}}^{\star}) - f^{\overline{M}}(\pi))},$$

w/ $\lambda > 0$ chosen such that $\sum_{\pi} p(\pi) = 1$.

Policy Cover Inverse Gap Weighting

Given tabular MDP $\overline{M} \in \mathcal{M}, \gamma > 0$:

• For each $h \in [H]$, $s \in S$, $a \in A$, compute

$$\pi_{h,s,a} \coloneqq \underset{\pi}{\operatorname{arg\,max}} \frac{\mathbb{P}^{\overline{M},\pi}(s_h = s, a_h = a)}{1 + \gamma \cdot (f^{\overline{M}}(\pi_{\overline{M}}^{\star}) - f^{\overline{M}}(\pi))}$$

Policy cover: $\Psi \coloneqq {\pi_{\overline{M}}^{\star}} \cup {\pi_{h,s,a}}_{h \in [H], s \in S, a \in A}$.

• For each $\pi \in \Psi$, set

$$p(\pi) = \frac{1}{\lambda + \gamma \cdot (f^{\overline{M}}(\pi_{\overline{M}}^{\star}) - f^{\overline{M}}(\pi))},$$

w/ $\lambda > 0$ chosen such that $\sum_{\pi} p(\pi) = 1.$

Key ideas:

- PC-IGW balances exploration (reaching all parts of the MDP) and exploitation.
- Change of measure: Either have good coverage on M^{\star} , or estimation error is big.
- Certifies that $\operatorname{dec}_{\gamma}(\mathcal{M}, \overline{M}) \lesssim \frac{H^3 S A}{\gamma}$.

DEC: Illustrative Examples

Examples

• Capturing complexity of reward-based feedback

- 1. Multi-armed bandit
- 2. Full information
- 3. Structured bandits

Information-theoretic considerations

4. Bandits with information leakage

Incorporating observations

5. Tabular RL

Additional results

RL overview

Want to handle large state spaces \implies Use modeling / function approx.

Want to handle large state spaces \implies Use modeling / function approx.

Model-based methods

- Model class \mathcal{M} directly parameterizes transition dynamics.
 - Ex: $\mathcal{M} = MDPs$ with linear dynamics

Want to handle large state spaces \implies Use modeling / function approx.

Model-based methods

- Model class \mathcal{M} directly parameterizes transition dynamics.
 - Ex: $\mathcal{M} = MDPs$ with linear dynamics

Value-based methods

• Model state-action value functions with value fn. class $\mathcal{Q} \subset {\mathcal{S} \times \mathcal{A} \to \mathbb{R}}$.

$$Q_h^{M,\pi}(s,a) \coloneqq \mathbb{E}^{M,\pi} \Big[\sum_{h' \ge h}^H r_{h'} \mid s_h = s, a_h = a \Big].$$

• Induced model class: $\mathcal{M} = \{M \mid Q^{M,\pi} \in \mathcal{Q} \ \forall \pi\}$ or similar

Want to handle large state spaces \implies Use modeling / function approx.

Model-based methods

- Model class \mathcal{M} directly parameterizes transition dynamics.
 - Ex: $\mathcal{M} = MDPs$ with linear dynamics

Value-based methods

• Model state-action value functions with value fn. class $\mathcal{Q} \subset {\mathcal{S} \times \mathcal{A} \to \mathbb{R}}$.

$$Q_h^{M,\pi}(s,a) \coloneqq \mathbb{E}^{M,\pi} \Big[\sum_{h' \ge h}^H r_{h'} \mid s_h = s, a_h = a \Big].$$

• Induced model class: $\mathcal{M} = \{M \mid Q^{M,\pi} \in \mathcal{Q} \ \forall \pi\}$ or similar

Many examples of both:

- Low rank MDP
- LQR
- Linear mixture MDP
- State aggregation
- Block MDP

- Factored MDP
- Predictive state representations
- Linear bellman complete

- Low occupancy complexity
- Kernelized nonlinear regulator

Many different structural conditions for sample-efficient RL:

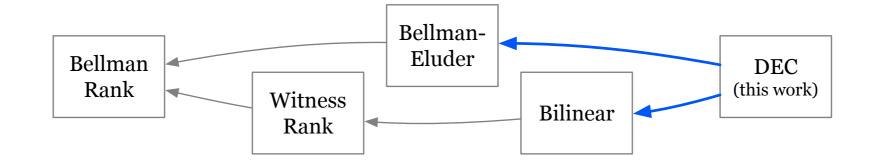
- Bellman Rank [Jiang et al. '17]
- Witness Rank [Sun et al. '19]
- Bilinear Rank [Du et al. '21]

- Eluder Dimension
 [Russo & Van Roy '13, Wang et al. '20]
- Bellman-Eluder Dimension
 [Jin et al. '2021]

Many different structural conditions for sample-efficient RL:

- Bellman Rank [Jiang et al. '17]
- Witness Rank [Sun et al. '19]
- Bilinear Rank [Du et al. '21]

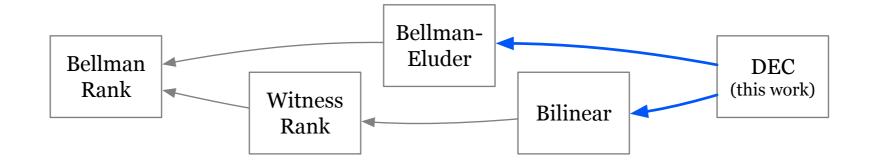
- Eluder Dimension
 [Russo & Van Roy '13, Wang et al. '20]
- Bellman-Eluder Dimension
 [Jin et al. '2021]



Many different structural conditions for sample-efficient RL:

- Bellman Rank [Jiang et al. '17]
- Witness Rank [Sun et al. '19]
- Bilinear Rank [Du et al. '21]

- Eluder Dimension
 [Russo & Van Roy '13, Wang et al. '20]
- Bellman-Eluder Dimension
 [Jin et al. '2021]



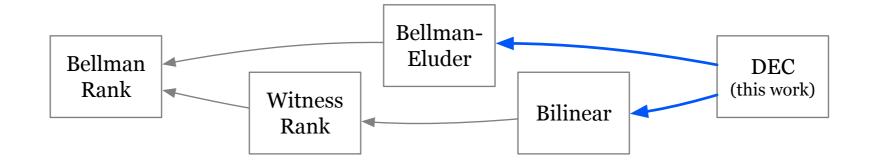
Example: For Bellman Rank, a variant of the PC-IGW algorithm attains

$$\operatorname{\mathsf{dec}}_\gamma(\mathcal{M},\overline{M}) \lesssim H^3 \cdot rac{\operatorname{\mathsf{bellman-rank}}}{\gamma}$$

Many different structural conditions for sample-efficient RL:

- Bellman Rank [Jiang et al. '17]
- Witness Rank [Sun et al. '19]
- Bilinear Rank [Du et al. '21]

- Eluder Dimension
 [Russo & Van Roy '13, Wang et al. '20]
- Bellman-Eluder Dimension
 [Jin et al. '2021]



Example: For Bellman Rank, a variant of the PC-IGW algorithm attains

$$\operatorname{dec}_{\gamma}(\mathcal{M},\overline{M}) \lesssim H^3 \cdot rac{\operatorname{bellman-rank}}{\gamma}$$

Lower bounds: Recover exponential lower bounds for linear- Q^* [Weisz et al. '20].

Conclusion

DEC bridges learning and decision making: Unified approach to

- Sample complexity/fundamental limits
- Algorithm design

Future directions:

- Computation, practical algorithms
- Going beyond the online RL model
- Many technical questions...

Get started Features Tutorials Research

🍐 Vowpal Wabbit

💭 GitHub

(available @ <u>vowpalwabbit.org</u>)

47