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Data-driven decision making

Many different problems and formulations
• Bandits (contextual, dueling, ...)
• Control
• Dynamic pricing
• Online optimization

• Reinforcement learning
• Dynamic treatments
• Allocation, assortment optimization,

inventory management

Challenge:
Unified approach to developing algorithms with optimal sample complexity?
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Decision Making with Structured Observations (DMSO)

For each round t = 1, . . . , T :
• Learner selects decision π(t) ∈ Π.
• Nature reveals reward r(t) ∈ R ⊆ R and observation o(t) ∈ O.

Stochastic setting: Assume (r(t), o(t)) ∼ M!(π(t)) independently, where M!(·) is the
underlying modelmodelmodelmodelmodelmodelmodelmodelmodelmodelmodelmodelmodelmodelmodelmodelmodel .

Realizability: Assume M! ∈ M, where M is a known class (captures prior knowledge).

Regret:

RegDM(T ) :=
T∑

t=1

fM!
(π!)− fM!

(π(t)),

where fM(π) := EM,π[r], π! = argmaxπ∈Π fM!
(π).
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Example: Multi-Armed Bandit

In DMSO framework:
• O = {∅}
• Π = {1, . . . , A}.
• M = ǳ�HH R@bm#;�mbbB�M `2r�`/ /Bbi`B#miBQMbǴ or similar

decision space Π = {1,…, A}

[Lai & Robbins ’85, Burnetas & Katehakis ’96, Auer et al. ’02, Audibert & Bubeck ’09, Garivier et al. ’19]

re
w

ar
d
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Example: Structured Bandits

Linear bandits
• O = {∅}
• Π ⊆ Rd.
• FM :=

{
fM | M ∈ M

}
= HBM2�` 7mM+iBQMb.

[Abe & Long ’99, Auer ’02, Dani et al. ’08, Chu et al. ’11, Abbasi-Yadkori et al. ’11, ...]

Nonparametric bandits
• O = {∅}
• Π ⊆ Rd.
• FM = GBTb+?Bix Q` >ƺH/2` 7mM+iBQMb.

[Kleinberg ’04, Auer et al. ’07, Kleinberg et al. ’08, ...]
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Example: Reinforcement Learning

Episodic finite-horizon MDP:
• M =

{
S,A, {PM

h }Hh=1, {RM
h }Hh=1, d1

}
.

• S: State space, A: Action space
• PM

h : S ×A → ∆(S): Transition distribution
• RM

h : S ×A → ∆(R): Reward distribution
• d1: Initial state distribution

Dynamics for each episode: For h = 1, . . . , H :
ah = πh(sh), rh ∼ RM

h (sh, ah), sh+1 ∼ PM
h (sh, ah) (with s1 ∼ d1)

In DMSO framework:
• Π is a set of non-stationary policies π = (π1, . . . ,πH), w/ πh : S → A.
• Observation o(t) = (s(t)

1 , a(t)
1 , r(t)

1 ), . . . , (s(t)

H , a(t)

H , r(t)

H ) when π(t) is executed in M!.
• Reward r(t) =

∑H
h=1 r

(t)

h .

s"#$%

s&'$('
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Example: Reinforcement Learning

Many examples of M for reinforcement learning:

• Finite State/Action (tabular)
• Low-Rank MDP [Jin et al. ’20]
• Linear Quadratic Regulator (LQR)

[Dean et al. ’19]
• Linear Mixture MDP

[Modi et al. ’20, Ayoub et al. ’20]
• State Aggregation

[Li ’09, Dong et al. ’20]
• Block MDP [Jiang et al. ’17]
• Factored MDP [Kearns & Koller ’99]

• Predictive State Rrepresentations
[Littman et al. ’01]

• Bellman Complete
[Munos ’05, Zanette et al ’20]

• Low Occupancy Complexity
[Du et al. ’21]

• Kernelized Nonlinear Regulator
[Kakade et al. ’20]

...

xh+1 = A xh + Bah + wh
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Decision Making with Structured Observations (DMSO)

For each round t = 1, . . . , T :
• Learner selects decision π(t) ∈ Π.
• Nature reveals reward r(t) ∈ R and observation o(t) ∈ O.

Questions

Statistical complexityStatistical complexityStatistical complexityStatistical complexityStatistical complexityStatistical complexityStatistical complexityStatistical complexityStatistical complexityStatistical complexityStatistical complexityStatistical complexityStatistical complexityStatistical complexityStatistical complexityStatistical complexityStatistical complexity : Is there a single complexity measure that can capture
optimal regret (as a function of horizon T , class M)?

Algorithm designAlgorithm designAlgorithm designAlgorithm designAlgorithm designAlgorithm designAlgorithm designAlgorithm designAlgorithm designAlgorithm designAlgorithm designAlgorithm designAlgorithm designAlgorithm designAlgorithm designAlgorithm designAlgorithm design: General algorithmic principles that work for any class M?
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Why is this problem challenging?

10



Statistical complexity: What makes a problem easy or hard?

ℳ = {M1, M2, M3}

re
w

ar
d

decision space Π

fM(π)
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Statistical complexity: What makes a problem easy or hard?

Reward structure and information sharing

! Hard: Many models, many optimal decisions.
" Easy: Many models, few optimal decisions.
! Hard: Selecting π only reveals π’s own reward.
" Easy: Select single π reveals information about all rewards.

Statistical complexity is tied to algorithm design

Further issues
• Noise/observations can leak identity of true model.
• Handling large, structured decision/observation spaces (e.g., RL).

14



Statistical complexity: What makes a problem easy or hard?

Reward structure and information sharing

! Hard: Many models, many optimal decisions.
" Easy: Many models, few optimal decisions.
! Hard: Selecting π only reveals π’s own reward.
" Easy: Select single π reveals information about all rewards.

Statistical complexity is tied to algorithm design

Further issues
• Noise/observations can leak identity of true model.
• Handling large, structured decision/observation spaces (e.g., RL).

14



Statistical complexity: What makes a problem easy or hard?

Reward structure and information sharing

! Hard: Many models, many optimal decisions.
" Easy: Many models, few optimal decisions.
! Hard: Selecting π only reveals π’s own reward.
" Easy: Select single π reveals information about all rewards.

Statistical complexity is tied to algorithm design

Further issues
• Noise/observations can leak identity of true model.
• Handling large, structured decision/observation spaces (e.g., RL).

14



Statistical complexity: What makes a problem easy or hard?

Reward structure and information sharing

! Hard: Many models, many optimal decisions.
" Easy: Many models, few optimal decisions.
! Hard: Selecting π only reveals π’s own reward.
" Easy: Select single π reveals information about all rewards.

Statistical complexity is tied to algorithm design

Further issues
• Noise/observations can leak identity of true model.
• Handling large, structured decision/observation spaces (e.g., RL).

14



Can there be single complexity measure that captures the statistical
complexity of interactive decision making?

Our result: Yes!

Decision-Estimation CoefficientDecision-Estimation CoefficientDecision-Estimation CoefficientDecision-Estimation CoefficientDecision-Estimation CoefficientDecision-Estimation CoefficientDecision-Estimation CoefficientDecision-Estimation CoefficientDecision-Estimation CoefficientDecision-Estimation CoefficientDecision-Estimation CoefficientDecision-Estimation CoefficientDecision-Estimation CoefficientDecision-Estimation CoefficientDecision-Estimation CoefficientDecision-Estimation CoefficientDecision-Estimation Coefficient
• Recovers optimal rates! for bandits and RL.
• Comes with unified algorithm design principle.
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Our Result: The Decision-Estimation Coefficient

The Decision-Estimation Coefficient
For M ∈ M and γ > 0, define

decγ(M,M) = min
p∈∆(Π)

max
M∈M

Eπ∼p

[
fM(π#

M)− fM(π)︸ ︷︷ ︸
regret of decision

−γ ·D2
>2H

(
M(π),M(π)

)
︸ ︷︷ ︸
information gain for obs.

]
,

where:
• π#

M = optimal decision for M .
• D2

>2H(P,Q) :=
∫
(
√

p(z)−
√

q(z))2dz. (can use DEG
(
P ‖Q

)
:=

∫
p(z) log(p(z)/q(z))dz)

decγ(M) := max
M∈M

decγ(M,M).

Generalizes:
1. inverse gap weighting for bandits/contextual bandits

[Abe & Long ’99, F & Rakhlin ’20]
2. information ratio [Russo & Van Roy ’14, ’18]
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DEC: Lower bounds

Localized version of DEC lower bounds regret for any problem
(for appropriate choice of γ)

Setting DEC Lower Bound Tight?
Multi-Armed Bandit

√
AT !

Multi-Armed Bandit w/ gap A/∆ !

Linear Bandit
√
dT " (d

√
T )

Lipschitz Bandit T
d+1
d+2 !

ReLU Bandit 2d !

Tabular RL
√
HSAT !

Linear MDP
√
dT " (d

√
T )

RL w/ linear Q! 2d !
Deterministic RL w/ linear Q! d !

18



DEC: Algorithms

Estimation-to-Decisions Meta-Algorithm (E2D)
For t = 1, . . . , T :

• Get estimator M̂ (t) ∈ M from supervised estimation algorithm.

• Solve min-max optimization problem:

p(t) = argmin
p∈∆(Π)

max
M∈M

Eπ∼p

[
fM(π"

M)− fM(π)− γ ·D2
>2H

(
M(π), M̂ (t)(π)

)]
.

(corresponds to decγ(M, M̂ (t)))

• Sample π(t) ∼ p(t) and update estimation algorithm with (r(t), o(t)).

E2D guarantee: Regret is controlled by estimation error + DEC

19
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DEC: Regret bound

Define estimation error:

EstHel(T ) :=
∑T

t=1 D
2
>2H

(
M!(π(t)), M̂ (t)(π(t))

)
.

Theorem (F., Kakade, Qian, Rakhlin ’21)

The 1k. algorithm (w/ parameter γ > 0) has

RegDM(T ) ≤ decγ(M) · T + γ ·EstHel(T ).

Can guarantee EstHel(T ) ≤ small using online learning/sequential predictiononline learning/sequential predictiononline learning/sequential predictiononline learning/sequential predictiononline learning/sequential predictiononline learning/sequential predictiononline learning/sequential predictiononline learning/sequential predictiononline learning/sequential predictiononline learning/sequential predictiononline learning/sequential predictiononline learning/sequential predictiononline learning/sequential predictiononline learning/sequential predictiononline learning/sequential predictiononline learning/sequential predictiononline learning/sequential prediction .
[Vovk’98, Cesa-Bianchi-Lugosi ’06, Rakhlin-Sridharan ’14,...]

Typically, EstHel(T ) ≤ capacity(M):
• EstHel(T ) = log|M| (finite). [Vovk ’95]
• EstHel(T ) = Õ(d) (linear/parametric in Rd). [e.g., Cesa-Bianchi & Lugosi ’06]20
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[Vovk’98, Cesa-Bianchi-Lugosi ’06, Rakhlin-Sridharan ’14,...]

Typically, EstHel(T ) ≤ capacity(M):
• EstHel(T ) = log|M| (finite). [Vovk ’95]
• EstHel(T ) = Õ(d) (linear/parametric in Rd). [e.g., Cesa-Bianchi & Lugosi ’06]20



DEC: Learnability

Theorem (F., Kakade, Qian, Rakhlin ’21)

Under appropriate assumptions, any algorithm must have

RegDM(T ) ! max
γ>0

min
{
decγ,εγ (M) · T, γ

}
,

and 1k. achieves

RegDM(T ) " max
γ>0

min
{
decγ,εγ (M) · T, γ ·EstHel(T )

}
,

where decγ,εγ (M) is a “localized” variant of the DEC.

Example: Multi-armed bandit w/ Π = {1, . . . , A}:

decγ,εγ (M) ∝ A
γ

=⇒ RegDM(T ) ≥ max
γ>0

min

{
AT
γ

, γ

}
=

√
AT.
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DEC: Learnability

Theorem (F., Kakade, Qian, Rakhlin ’21)

Under appropriate assumptions, any algorithm must have

RegDM(T ) ! max
γ>0

min
{
decγ,εγ (M) · T, γ

}
,

and 1k. achieves

RegDM(T ) " max
γ>0

min
{
decγ,εγ (M) · T, γ ·EstHel(T )

}
,

where decγ,εγ (M) is a “localized” variant of the DEC.

Characterization for learnability:
Suppose M is convex and has bounded estimation complexity.

Sublinear regret is possible iff limγ→∞ γp · decγ(M) = 0 for some p > 0.
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Technical remarks

Why Hellinger distance?

If all M ∈ M admit densities bounded above by B, can derive similar
results using DEC with KL divergence, with extra log(B) factors.

Depending on assumptions, various gaps between upper and lower
bounds (and opportunities for improvement)

• Localization radius
• Convex M vs. general M.
• In-expectation vs. in-probability.
• EstHel(T ) vs. weaker notions of estimation error

See paper for more details.
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DEC and E2D: Summary

Bridges learning and decision making!
Use any out-of-the-box supervised estimation algorithm for M.
=⇒ E2D takes care of the rest.

Bandits

In
te
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Connection to statistical estimation

Modulus of Continuity [Donoho & Liu ’87, ’91, Juditsky-Nemirovski ’09, Polyanskiy-Wu ’19]

ωε(M,M) := max
M∈M

{∣∣fM − fM
∣∣ | D2

>2H
(
M,M

)
≤ ε2

}

Gives lower bounds (in some cases, upper bounds) on rates for nonparametric
functional estimation.

DEC extends classical theory of statistical estimation [Le Cam ’73] to interactive
decision making (in a general setting).
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Related complexity measures

Information ratio
[Russo & Van Roy ’14, ’18, Lattimore & Zimmert ’19, Lattimore & György ’20]

• Original version always upper bounds DEC; arbitrarily larger in general.
• Bayesian analogue of DEC can be related to generalized information ratio from

[Lattimore & György ’20] if (i) class M is convex, (ii) we use KL instead of Hellinger.

Graves-Lai complexity measure
[Graves & Lai ’99, Combes et al. ’17, Jun & Zhang ’20, ...]

• Closely related to DEC, but (i) constrained (ii) only considers regret under M .
• Characterizes optimal asymptotic instance-dependent regret.
• Does not capture minimax rates with finite samples.
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DEC: Illustrative Examples

Examples
• Capturing complexity of reward-based feedback
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2. Full information
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4. Bandits with information leakage

• Incorporating observations
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• RL overview
• Proofs (multi-armed bandit)
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Example #1: Multi-Armed Bandit

Setup: Π = {1, . . . , A}, O = {∅}, M = �HH R@bm#;�mbbB�M `2r�`/ /Bbi`B#miBQMb.

Mean rewards act as sufficient statistic; replace Hellinger with squared error.

decγ(M,M) = min
p∈∆(Π)

max
M∈M

Eπ∼p

[
fM(π#

M)− fM(π)− γ ·D2
>2H

(
M(π),M(π)

)]
.
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Example #1: Multi-Armed Bandit

Upper bound approach #1: Inverse Gap Weighting
[Abe & Long ’99], [F & Rakhlin ’20].

Given M ∈ M, γ > 0, set

p(π) =
1

λ+ γ · (fM(π!
M
)− fM(π))

,

w/ λ > 0 chosen such that
∑

π p(π) = 1.

• Exact minimizer for decSqγ (M,M); leads to A
γ bound.

• Large γ =⇒ exploit; small γ =⇒ explore.

• E2D w/ IGW recovers SquareCB algo. for contextual bandits [F & Rakhlin ’20].



Example #1: Multi-Armed Bandit

Upper bound approach #1: Inverse Gap Weighting
[Abe & Long ’99], [F & Rakhlin ’20].

Given M ∈ M, γ > 0, set

p(π) =
1

λ+ γ · (fM(π!
M
)− fM(π))

,

w/ λ > 0 chosen such that
∑

π p(π) = 1.

• Exact minimizer for decSqγ (M,M); leads to A
γ bound.

• Large γ =⇒ exploit; small γ =⇒ explore.

• E2D w/ IGW recovers SquareCB algo. for contextual bandits [F & Rakhlin ’20].



Example #1: Multi-Armed Bandit

Upper bound approach #1: Inverse Gap Weighting
[Abe & Long ’99], [F & Rakhlin ’20].

Given M ∈ M, γ > 0, set

p(π) =
1

λ+ γ · (fM(π!
M
)− fM(π))

,

w/ λ > 0 chosen such that
∑

π p(π) = 1.

• Exact minimizer for decSqγ (M,M); leads to A
γ bound.

• Large γ =⇒ exploit; small γ =⇒ explore.

• E2D w/ IGW recovers SquareCB algo. for contextual bandits [F & Rakhlin ’20].



Example #1: Multi-Armed Bandit

Approach #2: Posterior Sampling
[Thompson ’33, Agrawal-Goyal ’13 Russo-Van Roy ’14]

By minimax theorem, have

decSqγ (M,M) = min
p∈∆(Π)

max
M∈M

Eπ∼p

[
fM(π#

M)− fM(π)− γ · (fM(π)− fM(π))2
]
.

Posterior sampling algorithm: Sample M ∼ µ, play π#
M .

• Leads to decSqγ (M,M) ≤ A
γ ; non-constructive.
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Example #2: Full Information

Same as bandits: Π = {1, . . . , A}, R = [0, 1], but all rewards revealed:

o = (r(π))π∈Π.

Computing the DEC:
• Upper bound: decγ(M,M) ≤ 1

γ (greedy suffices)
• Lower bound: decγ(M) ≥ 1

γ (playing any decision reveals info about all others).

Applying the main theorem:

decγ(M) ∝ 1
γ

=⇒ RegDM(T ) ≥ max
γ>0

min

{
T
γ
, γ

}
=

√
T .

Intuition: Big offset from D2
>2H

(
M(π),M(π)

)
regardless of how π is chosen.
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Example #3: Structured Bandits

Bandits and full information lie at two extremes w.r.t. information sharing.

Linear bandits [Auer ’02, Dani et al. ’08, Chu et al. ’11, Abbasi-Yadkori et al. ’11]
• O = {∅}
• Π ⊆ Rd.
• FM := {fM | M ∈ M} = HBM2�` 7mM+iBQMb.

decSqγ (M) ∝ d
γ

=⇒ RegDM(T ) ≥ max
γ>0

min

{
Td
γ

, γ

}
=

√
dT .

Many classes have similar decγ(M) = 2z@/BK
γ scaling (cvx. bandits, generalized linear, ...)

Nonparametric bandits [Kleinberg ’04, Auer et al. ’07, Kleinberg et al. ’08, ...]
• O = {∅}
• Π ⊆ Rd.
• FM = GBTb+?Bix 7mM+iBQMb.

decSqγ (M) ∝ 1

γ
1

d+1

=⇒ RegDM(T ) ≥ T
d+1
d+2 .

F =

( )

…
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Example #4: Information-Theoretic Considerations

For examples so far, only mean reward function mattered.

Another bandit variant: Π = {1, . . . , A}, O = {∅}, for all M ∈ M:

M(π) :=

{
Ber(1/2 + ε), π = π!

M ,

N (1/2, 1), π "= π!
M ,

Computing the DEC:

decγ(M) ∝ I{γ ≤ A/2} =⇒ RegDM(T ) ! A.

(compare to
√
AT for MAB)

Hellinger (information-theoretic divergence) strongly distinguishes changes in distribution.

D2
>2H

(
M(π),M(π)

)
∝ I{π = π!

M}, while (fM(π)− fM(π))2 depends on scale.
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Hellinger (information-theoretic divergence) strongly distinguishes changes in distribution.

D2
>2H

(
M(π),M(π)

)
∝ I{π = π!

M}, while (fM(π)− fM(π))2 depends on scale.
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Generalizing further, can encode arbitrary auxiliary information in lower
bits of reward signal.



DEC: Illustrative Examples

Examples
• Capturing complexity of reward-based feedback

1. Multi-armed bandit
2. Full information
3. Structured bandits

• Information-theoretic considerations
4. Bandits with information leakage

• Incorporating observations
5. Tabular RL

Additional results
• RL overview
• Proofs (multi-armed bandit)



Example #5: Tabular Reinforcement Learning

Setup:
• M: Episodic horizon-H MDPs with |S| = S, |A| = A, R = [0, 1].
• Π = {MQM@bi�iBQM�`v TQHB+B2b πh : S → A}.
• o = (s1, a1, r1), . . . , (sH , aH , rH).

Lower bound:

decγ(M) ≥ HSA

γ
=⇒ RegDM(T ) ≥

√
HSAT.

Upper bounds:
• decγ(M,M) ! H3SA

γ via Policy-Cover Inverse Gap WeightingPolicy-Cover Inverse Gap WeightingPolicy-Cover Inverse Gap WeightingPolicy-Cover Inverse Gap WeightingPolicy-Cover Inverse Gap WeightingPolicy-Cover Inverse Gap WeightingPolicy-Cover Inverse Gap WeightingPolicy-Cover Inverse Gap WeightingPolicy-Cover Inverse Gap WeightingPolicy-Cover Inverse Gap WeightingPolicy-Cover Inverse Gap WeightingPolicy-Cover Inverse Gap WeightingPolicy-Cover Inverse Gap WeightingPolicy-Cover Inverse Gap WeightingPolicy-Cover Inverse Gap WeightingPolicy-Cover Inverse Gap WeightingPolicy-Cover Inverse Gap Weighting (PC-IGW).
(new, efficient algorithm!)

• decγ(M,M) ! H2SA
γ via posterior sampling.

Incorporating observations is critical!
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Example #5: Tabular Reinforcement Learning

Policy Cover Inverse Gap Weighting
Idea: Apply inverse gap weighting to small set of representative policiessmall set of representative policiessmall set of representative policiessmall set of representative policiessmall set of representative policiessmall set of representative policiessmall set of representative policiessmall set of representative policiessmall set of representative policiessmall set of representative policiessmall set of representative policiessmall set of representative policiessmall set of representative policiessmall set of representative policiessmall set of representative policiessmall set of representative policiessmall set of representative policies .



Example #5: Tabular Reinforcement Learning

Policy Cover Inverse Gap Weighting
Given tabular MDP M ∈ M, γ > 0:

• For each h ∈ [H], s ∈ S, a ∈ A, compute

πh,s,a := argmax
π

PM,π(sh = s, ah = a)

1 + γ · (fM(π"
M
)− fM(π))

Policy cover: Ψ := {π"
M} ∪ {πh,s,a}h∈[H],s∈S,a∈A.

• For each π ∈ Ψ, set

p(π) =
1

λ+ γ · (fM(π"
M
)− fM(π))

,

w/ λ > 0 chosen such that
∑

π p(π) = 1.

Key ideas:
• PC-IGW balances exploration (reaching all parts of the MDP) and exploitation.
• Change of measure: Either have good coverage on M", or estimation error is big.
• Certifies that decγ(M,M) ! H3SA

γ .
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RL: Going beyond tabular methods

Want to handle large state spaces =⇒ Use modeling / function approx.

Model-based methods
• Model class M directly parameterizes transition dynamics.

• Ex: M = J.Sb rBi? HBM2�` /vM�KB+b

Value-based methods
• Model state-action value functions with value fn. class Q ⊂ {S ×A → R}.

QM,π
h (s, a) := EM,π

[∑H
h′≥h rh′ | sh = s, ah = a

]
.

• Induced model class: M =
{
M | QM,π ∈ Q ∀π

}
or similar

Many examples of both:
• Low rank MDP
• LQR
• Linear mixture MDP
• State aggregation
• Block MDP

• Factored MDP
• Predictive state

representations
• Linear bellman

complete

• Low occupancy
complexity

• Kernelized nonlinear
regulator
...
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Reinforcement learning: Overview

Many different structural conditions for sample-efficient RL:

• Bellman Rank [Jiang et al. ’17]

• Witness Rank [Sun et al. ’19]

• Bilinear Rank [Du et al. ’21]

• Eluder Dimension
[Russo & Van Roy ’13, Wang et al. ’20]

• Bellman-Eluder Dimension
[Jin et al. ’2021]

Example: For Bellman Rank, a variant of the PC-IGW algorithm attains

decγ(M,M) ! H3 · #2HHK�M@`�MF
γ

.

Lower bounds: Recover exponential lower bounds for linear-Q" [Weisz et al. ’20].

Bellman
Rank Witness

Rank

Bellman-
Eluder

Bilinear

DEC
(this work)
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Conclusion

DEC bridges learning and decision making: Unified approach to
• Sample complexity/fundamental limits
• Algorithm design

Future directions:
• Computation, practical algorithms
• Going beyond the online RL model
• Many technical questions...

...

arXiv: 2112.13487

See [F & Rakhlin ’20] for practical algorithms
(available @ vowpalwabbit.org)
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http://vowpalwabbit.org

