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A Sneak Preview

• An all-in-one private mean estimator!

• Efficient, private, with near-optimal sample complexity

• But also robust with sub-Gaussian rates

• More broadly:
• Addresses a fundamental deficiency in our understanding of DP estimation

• Algorithmic high-dimensional statistics strikes again!

• A new area to explore for multiple communities
• Robust Statistics

• Sum-of-Squares



Privacy?

How do we ensure statistics don’t leak 
information about individual datapoints?



Differential Privacy
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[Dwork, McSherry, Nissim, Smith], 2006
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or

?

• 𝑀:𝐷𝑛 → 𝑅 is 𝜀, 𝛿 -DP if for all inputs 𝑋, 𝑋′ which differ on one 
entry:

∀𝑆 ⊆ 𝑅 Pr 𝑀 𝑋 ∈ 𝑆 ≈𝜀,𝛿 Pr 𝑀 𝑋′ ∈ 𝑆
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(𝜀, 𝛿)-Differential Privacy

• “Privacy loss random variable” is bounded by 𝜀 with probability 1 − 𝛿
for all datasets 𝑋 and 𝑋′ which differ in a single entry

• Pure differential privacy: 𝛿 = 0

• Approximate differential privacy: 𝛿 > 0

• Qualitatively different notions
• Much easier to design algorithms for approx. DP

• Today: Goal is pure DP algorithms



Non-Private Mean Estimation

Given 𝑑-dimensional  𝑋1, … , 𝑋𝑛 ∼ 𝑝, where 𝑝 has covariance 
Σ 2 ≤ 1, output Ƹ𝜇 such that Ƹ𝜇 − 𝐸[𝑝] 2 ≤ 𝛼 with prob. 99%

• Empirical mean: Ƹ𝜇 =
1

𝑛
σ𝑋𝑖

• 𝑛 = 𝑂(𝑑/𝛼2) samples suffice non-privately (rate: 𝛼 ≤ 𝑂( 𝑑/𝑛)

• Fancier techniques: … w.p. ≥ 1 − 𝛽 using 𝑛 = 𝑂
𝑑+log 1/𝛽

𝛼2
samples

• Rate: 𝛼 ≤ 𝑂( (𝑑 + log 1/𝛽)/𝑛)
• “Sub-Gaussian rates” [Lugosi, Mendelson], 2019, [Hopkins], 2020, …
• Not really our focus, but we will eventually get it for free 

• Today: pretend we start with a “coarse estimate” of 𝐸 𝑝
• i.e., by recentering, 𝐸 𝑝 2 ≤ 𝑂 𝑑
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Algorithms for Private Mean Estimation

Sample Complexity Privacy Notion Running Time

Empirical Mean 𝑂(𝑑) Not private Polynomial



The plan from here…

1. Three Deficient Private Algorithms

2. Fixing the Exponential Mechanism

3. The Algorithm

4. The Bigger Picture



The plan from here…

1. Three Deficient Private Algorithms

2. Fixing the Exponential Mechanism

3. The Algorithm

4. The Bigger Picture



Three Deficient Algorithms
Every flawed algorithm is flawed in its own way…



Differential Privacy 101

• Let 𝑓 ∶ 𝐷𝑛 → 𝐑𝑑 be a vector-valued function of interest
• e.g., some non-private mean estimation algorithm

• ℓ1-sensitivity of 𝑓: Δ1
𝑓
= max

𝑋,𝑋′:𝑑𝐻 𝑋,𝑋′ =1
𝑓 𝑋 − 𝑓 𝑋′

1

• “How much can the function change by modifying one datapoint?”

• The Laplace Mechanism: 𝑓 𝑋 + Lap Δ1
𝑓
/𝜀

⊗𝑑
is (𝜀, 0)-DP

• “Add Laplace noise to each coordinate, proportional to the ℓ1-sensitivity”



Laplace Mechanism

• Empirical mean: 𝑓 𝑋 =
1

𝑛
σ𝑋𝑖

• Sensitivity is infinite



Laplace Mechanism

• Clipped empirical mean: 𝑓 𝑋 =
1

𝑛
σclip(𝑋𝑖)

• Limit sensitivity by clipping to an ℓ2-ball of radius 𝑂 𝑑

• Biases the statistic, but we can control the bias [K., Singhal, Ullman], 2020

• Resulting ℓ1-sensitivity: Δ1
𝑓
≤ 𝑑/𝑛

• Output ො𝜇 =
1

𝑛
σclip(𝑋𝑖) + Lap 𝑑/𝜀𝑛 ⊗𝑑

• ℓ2 error due to noise ≈ 𝑑1.5/𝜀𝑛

• Resulting sample complexity: 𝑂(𝑑1.5/𝜀)



Algorithms for Private Mean Estimation

Sample Complexity Privacy Notion Running Time

Empirical Mean 𝑂(𝑑) Not private Polynomial

Laplace Mechanism 𝑂(𝑑1.5) Pure DP Polynomial



Gaussian Mechanism (diffs)

• Add Gaussian noise instead of Laplace

• Scaled to ℓ2-sensitivity instead of ℓ1-sensitivity

• Resulting sample complexity: 𝑂(𝑑/𝜀)

• Only gives approximate DP (𝛿 > 0) instead of pure DP (𝛿 = 0)



Algorithms for Private Mean Estimation

Sample Complexity Privacy Notion Running Time

Empirical Mean 𝑂(𝑑) Not private Polynomial

Laplace Mechanism 𝑂(𝑑1.5) Pure DP Polynomial

Gaussian Mechanism 𝑂(𝑑) Approximate DP Polynomial



Differential Privacy 102

• Privately select an object from a set based on a “score”

• Given: Sensitive dataset 𝑋 = 𝑋1, … , 𝑋𝑛
Set of objects 𝑄

Score function 𝑓: 𝐷𝑛 × 𝑄 → 𝐑

• Output: 𝑞 ∈ 𝑄 which (approximately) maximizes 𝑓(𝑋, 𝑞)

• Exponential mechanism: Sample 𝑞 with probability ∝ exp 𝜀 ⋅ 𝑓(𝑋, 𝑞)

• (𝜀, 0)-differentially private



Exponential Mechanism Example

• Running an election
• Set of objects: election candidates

• Sensitive dataset: votes

• Score function: number of votes for each candidate

• Non-privately: pick the highest score

• Privately: sample winner ∝ exp(𝜀 ⋅ Score)

• Assign scores, use to noisily pick winner

20 votes19 votes15 votes

𝜀 = 0.1 24% chance 36% chance 40% chance



Exponential Mechanism

• Intuition: Empirical mean should be close to true mean in every 1D projection

[Bun, K., Steinke, Wu], NeurIPS ’19, [K., Singhal, Ullman], COLT ‘20
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Exponential Mechanism

• Intuition: Empirical mean should be close to true mean in every 1D projection

• Score function at 𝑞: “How many points must be changed to have 𝑞 be far from 
empirical (clipped) mean in some projection?”

[Bun, K., Steinke, Wu], NeurIPS ’19, [K., Singhal, Ullman], COLT ‘20

Score = 0 Score = big



Exponential Mechanism

• Intuition: Empirical mean should be close to true mean in every 1D projection

• Score function at 𝑞: “How many points must be changed to have 𝑞 be far from 
empirical (clipped) mean in some projection?”
• Have to look at all projections to compute…

• Set of objects: Cover of set of possible means 2 ෨𝑂 𝑑

• Exponentially large…

• Standard analysis gives that 𝑛 = ෨𝑂 𝑑 samples suffice

• Related: private hypothesis selection via Scheffé’s method

[Bun, K., Steinke, Wu], NeurIPS ’19, [K., Singhal, Ullman], COLT ‘20



Algorithms for Private Mean Estimation

Sample Complexity Privacy Notion Running Time

Empirical Mean 𝑂(𝑑) Not private Polynomial

Laplace Mechanism 𝑂(𝑑1.5) Pure DP Polynomial

Gaussian Mechanism 𝑂(𝑑) Approximate DP Polynomial

Exponential Mechanism ෨𝑂(𝑑) Pure DP Exponential



Algorithms for Private Mean Estimation

Sample Complexity Privacy Notion Running Time

Empirical Mean 𝑂(𝑑) Not private Polynomial

Laplace Mechanism 𝑂(𝑑1.5) Pure DP Polynomial

Gaussian Mechanism 𝑂(𝑑) Approximate DP Polynomial

Exponential Mechanism ෨𝑂(𝑑) Pure DP Exponential

Our Algorithm [HKM22] ෨𝑂(𝑑) Pure DP Polynomial

Theorem: Given 𝑋1, … , 𝑋𝑛 ∼ 𝑝 where 𝑝 has covariance Σ 2 ≤ 1 and 

𝐸 𝑝 2 ≤ 𝑂 𝑑 , there exists a computationally efficient (𝜀, 0)-DP 

algorithm which outputs ො𝜇 such that ො𝜇 − 𝐸 𝑝 2 ≤ 𝛼 with probability 

1 − 𝛽. It requires 𝑛 = ෨𝑂
𝑑+log(1/𝛽)

𝛼2𝜀
samples.

[Hopkins, K., Majid], STOC 2022



The plan from here…

1. Three Deficient Private Algorithms

2. Fixing the Exponential Mechanism

3. The Algorithm

4. The Bigger Picture



Why was the Exponential Mechanism slow?

Two problems to address:

1. Computing the score function for a single candidate is slow
• Solution: Efficient robust + high-dimensional statistics

2. Have to compute the score function for exponentially many 
candidates
• Solution: Efficient log-concave sampling from ∝ exp 𝜀 ⋅ 𝑓 𝑋, 𝑞



1. Efficiently computing the score function

Recent line of work on robust multivariate statistics excels at efficiently
finding “interesting directions” 

• Robust estimation (𝜂-fraction of data is corrupted)
• [Diakonikolas, K., Kane, Li, Moitra, Stewart], 2016, [Lai, Rao, Vempala], 2016, …

• Sub-Gaussian rates for heavy-tailed estimation (…+ log(1/𝛽))
• [Lugosi, Mendelson], 2019 made efficient by [Hopkins], 2020, …

• Privacy
• [Hopkins, K., Majid], 2022, [Kothari, Manurangsi, Velingker], 2022, …?



Where do we go now? Finding a direction

• Score function over directions (not candidate means)
• Ideas from [Hopkins], 2020, [Cherapanamjeri, Flammarion, Bartlett], 2019

𝑍𝑖: datapoints
෤𝜇: current estimate
𝑟: “radius of interest”
𝑣: direction
𝑏𝑖: 0/1 indicators on points

𝑏𝑖: either 0 or 1

𝑣: unit vector

Either 𝑏𝑖 = 0
OR

𝑍𝑖 is far from 
current estimate ෤𝜇
in direction 𝑣

“Direction 𝑣’s score:
How many points are ‘far’

in direction 𝑣?”



Where do we go now? Finding a direction

• Score function over directions (not candidate means)
• Ideas from [Hopkins], 2020, [Cherapanamjeri, Flammarion, Bartlett], 2019

• Use SDP relaxation of the quadratic program

“Rounding scheme” = just use 𝑣



2. Running the Exponential Mechanism efficiently

• Sampling 𝑞 with probability ∝ exp 𝜀 ⋅ 𝑓 𝑋, 𝑞
• Naively requires computing 𝑓(𝑋, 𝑞) for every 𝑞 in an exponentially-sized cover

• Idea: if 𝑓(𝑋, 𝑞) is concave, then resulting distribution is log-concave

• Efficient private samplers for log-concave distributions exist
• Need multiplicative approximation versus usual total variation guarantee 

• [Bassily, Smith, Thakurta], FOCS 2014, [Mangoubi, Vishnoi], NeurIPS 2022

• Must use continuous version of exponential mechanism

• Additionally need a Lipschitz property



Efficient Log-Concave Sampling

Consider

Claim: SDP-VAL is both Lipschitz and concave. 

Therefore we can sample ∝ exp(𝜀 ⋅ SDPVAL(𝑞)) efficiently.
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Overall algorithm

1. Find a direction 𝑣
• Use the exponential mechanism with efficient sampling to pick 𝑣

• Via random walk over directions that computes SDP score function at each step

2. Step in that direction
• Use exponential mechanism to privately estimate the step size

3. Repeat



Run exponential mechanism!
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Running efficient sampler…
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Run exponential mechanism!
Running efficient sampler…



Take a step



Etc.



A Meta-Theorem

Suppose we have a score function with all the following properties:
1. High score function implies high utility

2. Bounded sensitivity wrt dataset

3. Lipschitz wrt domain of candidates

4. Concave wrt domain of candidates

5. Large volume of high utility candidates within domain of candidates

Then exp. mech. will produce an 𝜀-DP high utility point efficiently.

We give a specific meta-theorem for SoS-based score functions

Framework also works for “coarse estimation” (not mentioned today)



Overall Theorem

Given an 𝜂-corrupted set of samples 𝑋1, … , 𝑋𝑛 ∼ 𝑝 where 𝑝 has 
covariance Σ 2 ≤ 1 and 𝐸 𝑝 2 ≤ 𝑅, there exists a computationally 
efficient (𝜀, 0)-DP algorithm which outputs ො𝜇 such that ො𝜇 − 𝐸 𝑝 2 ≤
𝛼 + 𝑂 𝜂 with probability 1 − 𝛽. It requires 

𝑛 = ෨𝑂
𝑑+log(1/𝛽)

𝛼2𝜀
+

𝑑 log 𝑅+min 𝑑,log 𝑅 log(1/𝛽)

𝜀
samples.

No algorithm can succeed with fewer than

𝑛 = Ω
𝑑+log(1/𝛽)

𝛼2𝜀
+

𝑑 log 𝑅+log(1/𝛽)

𝜀
samples.

[Hopkins, K., Majid], STOC 2022
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More importantly: new results for Gaussians (including covariance)

[Hopkins, K., Majid, Narayanan], 2022
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Efficient Robust Estimation
[Diakonikolas, K., Kane, Li, Moitra, 

Stewart, FOCS 2016]
[Lai, Rao, Vempala, FOCS 2016]

Efficient Sub-Gaussian Rates for  
Heavy-Tailed Estimation

[Hopkins, AoS 2020]

Efficient Private Estimation (with 
weaker privacy)

[K., Li, Singhal, Ullman, COLT 2019]

Inefficient Private Estimation
[Bun, K., Steinke, Wu, NeurIPS 2019]

[K., Singhal, Ullman, COLT 2020]

Inefficient Sub-Gaussian Rates 
for  Heavy-Tailed Estimation

[Lugosi, Mendelson, AoS 2019]

Efficient Private Estimation
[Hopkins, K., Majid, STOC 2022]

GMMs, 
data poisoning,

list learning, 
…

Robustness, sub-Gaussian rates, and privacy:
All connected by the same technical ideas!

… …

A priori bounds, 
moment asms., 

…



Are Robust and Private Estimation Equivalent?

• Privacy implies robustness…
• As long as the private algorithm has a very high success probability

• [Georgiev, Hopkins, NeurIPS 2022]

• Robustness implies privacy…
• Assuming the “good” solutions have a large enough volume

• [Hopkins, K., Majid, Narayanan, 2022]

• Close… but still some (significant) gaps



Conclusion

• First efficient pure DP algorithm with ෨𝑂(𝑑) sample complexity for 
mean estimation

• Also gets robustness and sub-Gaussian tails for free!

Open directions:

• More connections between robust and private estimation?

• Where else can the powerful SoS framework be used for DP estimation?
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