Efficient Private Mean Estimation

Gautam Kamath

University of Waterloo

February 2, 2023

STOC 2022

With Samuel B. Hopkins (MIT) and Mahbod Majid (University of Waterloo MMath → CMU PhD)

A Sneak Preview

- An all-in-one private mean estimator!
- Efficient, private, with near-optimal sample complexity
- But also robust with sub-Gaussian rates
- More broadly:
 - Addresses a fundamental deficiency in our understanding of DP estimation
 - Algorithmic high-dimensional statistics strikes again!
- A new area to explore for multiple communities
 - Robust Statistics
 - Sum-of-Squares

How do we ensure statistics don't leak information about individual datapoints?

• $M: D^n \to R$ is (ε, δ) -DP if for all inputs X, X' which differ on one entry:

 $\forall S \subseteq R \qquad \Pr[M(X) \in S] \approx_{\varepsilon, \delta} \Pr[M(X') \in S]$

[Dwork, McSherry, Nissim, Smith], 2006

• $M: D^n \to R$ is (ε, δ) -DP if for all inputs X, X' which differ on one entry:

 $\forall S \subseteq R \qquad \Pr[M(X) \in S] \le e^{\varepsilon} \Pr[M(X') \in S] + \delta$

[Dwork, McSherry, Nissim, Smith], 2006

(ε, δ) -Differential Privacy

- "Privacy loss random variable" is bounded by ε with probability 1δ for all datasets X and X' which differ in a single entry
- Pure differential privacy: $\delta=0$
- Approximate differential privacy: $\delta>0$
- Qualitatively different notions
 - Much easier to design algorithms for approx. DP
- Today: Goal is pure DP algorithms

Non-Private Mean Estimation

Given *d*-dimensional $X_1, ..., X_n \sim p$, where *p* has covariance $\|\Sigma\|_2 \leq 1$, output $\hat{\mu}$ such that $\|\hat{\mu} - E[p]\|_2 \leq \alpha$ with prob. 99%

- Empirical mean: $\hat{\mu} = \frac{1}{n} \sum X_i$
 - $n = O(d/\alpha^2)$ samples suffice non-privately (rate: $\alpha \le O(\sqrt{d/n})$
- Fancier techniques: ... w.p. $\geq 1 \beta$ using $n = O\left(\frac{d + \log(1/\beta)}{\alpha^2}\right)$ samples
 - Rate: $\alpha \le O(\sqrt{(d + \log 1/\beta)/n})$

Non-Private Mean Estimation

Given *d*-dimensional $X_1, \ldots, X_n \sim p$, where *p* has covariance $\|\Sigma\|_2 \leq 1$, output $\hat{\mu}$ such that $\|\hat{\mu} - E[p]\|_2 \leq \alpha$ with prob. 99%

- Empirical mean: $\hat{\mu} = \frac{1}{n} \sum X_i$
 - $n = O(d/\alpha^2)$ samples suffice non-privately (rate: $\alpha \le O(\sqrt{d/n})$
- Fancier techniques: ... w.p. $\geq 1 \beta$ using $n = O\left(\frac{d + \log(1/\beta)}{\alpha^2}\right)$ samples
 - Rate: $\alpha \le O(\sqrt{(d + \log 1/\beta)/n})$
 - "Sub-Gaussian rates" [Lugosi, Mendelson], 2019, [Hopkins], 2020, ...
 - Not really our focus, but we will eventually get it for free
- Today: pretend we start with a "coarse estimate" of E[p]
 - i.e., by recentering, $||E[p]||_2 \le O(\sqrt{d})$

Algorithms for Private Mean Estimation

	Sample Complexity	Privacy Notion	Running Time
Empirical Mean	O(d)	Not private	Polynomial

The plan from here...

- 1. Three Deficient Private Algorithms
- 2. Fixing the Exponential Mechanism
- 3. The Algorithm
- 4. The Bigger Picture

The plan from here...

- 1. Three Deficient Private Algorithms
- 2. Fixing the Exponential Mechanism
- 3. The Algorithm
- 4. The Bigger Picture

Three Deficient Algorithms

Every flawed algorithm is flawed in its own way...

- Let $f: D^n \to \mathbf{R}^d$ be a vector-valued function of interest
 - e.g., some non-private mean estimation algorithm
- ℓ_1 -sensitivity of $f: \Delta_1^f = \max_{X, X': d_H(X, X') = 1} ||f(X) f(X')||_1$
 - "How much can the function change by modifying one datapoint?"
- The Laplace Mechanism: $f(X) + Lap(\Delta_1^f / \varepsilon)^{\otimes d}$ is $(\varepsilon, 0)$ -DP
 - "Add Laplace noise to each coordinate, proportional to the ℓ_1 -sensitivity"

Laplace Mechanism

- Empirical mean: $f(X) = \frac{1}{n} \sum X_i$
- Sensitivity is infinite

Laplace Mechanism

- Clipped empirical mean: $f(X) = \frac{1}{n} \sum \operatorname{clip}(X_i)$
 - Limit sensitivity by clipping to an ℓ_2 -ball of radius $O(\sqrt{d})$
 - Biases the statistic, but we can control the bias [K., Singhal, Ullman], 2020
- Resulting ℓ_1 -sensitivity: $\Delta_1^f \leq d/n$
- Output $\hat{\mu} = \frac{1}{n} \sum \operatorname{clip}(X_i) + \operatorname{Lap}(d/\varepsilon n)^{\otimes d}$
- ℓ_2 error due to noise $\approx d^{1.5}/\epsilon n$
- Resulting sample complexity: $O(d^{1.5}/\varepsilon)$

Algorithms for Private Mean Estimation

	Sample Complexity	Privacy Notion	Running Time
Empirical Mean	0(d)	Not private	Polynomial
Laplace Mechanism	$O(d^{1.5})$	Pure DP	Polynomial

Gaussian Mechanism (diffs)

- Add Gaussian noise instead of Laplace
- Scaled to ℓ_2 -sensitivity instead of ℓ_1 -sensitivity
- Resulting sample complexity: $O(d/\varepsilon)$
- Only gives approximate DP ($\delta > 0$) instead of pure DP ($\delta = 0$)

Algorithms for Private Mean Estimation

	Sample Complexity	Privacy Notion	Running Time
Empirical Mean	0(d)	Not private	Polynomial
Laplace Mechanism	$O(d^{1.5})$	Pure DP	Polynomial
Gaussian Mechanism	0(d)	Approximate DP	Polynomial

- Privately select an object from a set based on a "score"
- Given: Sensitive dataset $X = X_1, \dots, X_n$

Set of objects Q

Score function $f: D^n \times Q \to \mathbf{R}$

- Output: $q \in Q$ which (approximately) maximizes f(X, q)
- Exponential mechanism: Sample q with probability $\propto \exp(\varepsilon \cdot f(X,q))$
- (ε , 0)-differentially private

Exponential Mechanism Example

- Running an election
 - Set of objects: election candidates
 - Sensitive dataset: votes
 - Score function: number of votes for each candidate

ε

- Non-privately: pick the highest score
- Privately: sample winner $\propto \exp(\varepsilon \cdot \text{Score})$
- Assign scores, use to noisily pick winner

	15 votes	19 votes	20 votes
= 0.1	24% chance	36% chance	40% chance

• Intuition: Empirical mean should be close to true mean in every 1D projection

[Bun, K., Steinke, Wu], NeurIPS '19, [K., Singhal, Ullman], COLT '20

• Intuition: Empirical mean should be close to true mean in every 1D projection

- Intuition: Empirical mean should be close to true mean in every 1D projection
- Score function at q: "How many points must be changed to have q be far from empirical (clipped) mean in some projection?"

[Bun, K., Steinke, Wu], NeurIPS '19, [K., Singhal, Ullman], COLT '20

- Intuition: Empirical mean should be close to true mean in every 1D projection
- Score function at q: "How many points must be changed to have q be far from empirical (clipped) mean in some projection?"
 - Have to look at all projections to compute...
- Set of objects: Cover of set of possible means $(2^{\tilde{O}(d)})$
 - Exponentially large...
- Standard analysis gives that $n = \tilde{O}(d)$ samples suffice
- Related: private hypothesis selection via Scheffé's method

Algorithms for Private Mean Estimation

	Sample Complexity	Privacy Notion	Running Time
Empirical Mean	0(d)	Not private	Polynomial
Laplace Mechanism	$O(d^{1.5})$	Pure DP	Polynomial
Gaussian Mechanism	0(d)	Approximate DP	Polynomial
Exponential Mechanism	$ ilde{O}(d)$	Pure DP	Exponential

Algorithms for Private Mean Estimation

	Sample Complexity	Privacy Notion	Running Time
Empirical Mean	O(d)	Not private	Polynomial
Laplace Mechanism	$O(d^{1.5})$	Pure DP	Polynomial
Gaussian Mechanism	<i>O</i> (<i>d</i>)	Approximate DP	Polynomial
Exponential Mechanism	$ ilde{O}(d)$	Pure DP	Exponential
Our Algorithm [HKM22]	$ ilde{O}(d)$	Pure DP	Polynomial

Theorem: Given $X_1, ..., X_n \sim p$ where p has covariance $\|\Sigma\|_2 \leq 1$ and $\|E[p]\|_2 \leq O(\sqrt{d})$, there exists a computationally efficient $(\varepsilon, 0)$ -DP algorithm which outputs $\hat{\mu}$ such that $\|\hat{\mu} - E[p]\|_2 \leq \alpha$ with probability $1 - \beta$. It requires $n = \tilde{O}\left(\frac{d + \log(1/\beta)}{\alpha^2 \varepsilon}\right)$ samples.

[Hopkins, K., Majid], STOC 2022

The plan from here...

- 1. Three Deficient Private Algorithms
- 2. Fixing the Exponential Mechanism
- 3. The Algorithm
- 4. The Bigger Picture

Why was the Exponential Mechanism slow?

Two problems to address:

- 1. Computing the score function for a single candidate is slow
 - Solution: Efficient robust + high-dimensional statistics
- 2. Have to compute the score function for exponentially many candidates
 - Solution: Efficient log-concave sampling from $\propto \exp(\varepsilon \cdot f(X,q))$

1. Efficiently computing the score function

Recent line of work on robust multivariate statistics excels at *efficiently* finding "interesting directions"

- Robust estimation (η -fraction of data is corrupted)
 - [Diakonikolas, K., Kane, Li, Moitra, Stewart], 2016, [Lai, Rao, Vempala], 2016, ...
- Sub-Gaussian rates for heavy-tailed estimation (...+ $log(1/\beta)$)
 - [Lugosi, Mendelson], 2019 made efficient by [Hopkins], 2020, ...
- Privacy
 - [Hopkins, K., Majid], 2022, [Kothari, Manurangsi, Velingker], 2022, ...?

Where do we go now? Finding a direction

- Score function over directions (not candidate means)
 - Ideas from [Hopkins], 2020, [Cherapanamjeri, Flammarion, Bartlett], 2019

Definition 6.3 (quadratic optimization problem [Hop20, CFB19]). Let $Z_1, \ldots, Z_k, \widetilde{\mu} \in \mathbb{R}^d, r > 0$. Let $\text{QUAD}(\widetilde{\mu}, r, Z)$ be the following quadratic program.

 Z_i : datapoints $\tilde{\mu}$: current estimate r: "radius of interest" v: direction b_i : 0/1 indicators on points

$$\operatorname{QUAD}(\widetilde{\mu}, r, Z) := 1$$

"Direction v's score: How many points are 'far' in direction v?" b_i : either 0 or 1 v: unit vector Either $b_i = 0$ OR Z_i is far from current estimate $\tilde{\mu}$ in direction v

Where do we go now? Finding a direction

- Score function over directions (not candidate means)
 - Ideas from [Hopkins], 2020, [Cherapanamjeri, Flammarion, Bartlett], 2019
- Use SDP relaxation of the quadratic program

Definition 6.4 (SDP Relaxation [Hop20, CFB19]). Let $Z_1, \ldots, Z_k, \tilde{\mu} \in \mathbb{R}^d, r > 0$. Let $SDP(\tilde{\mu}, r, Z)$ be the following semi-definite program.

$$SDP(\widetilde{\mu}, r, Z) := \max_{v, b, B, U, W} \operatorname{Tr} (B)$$
s.t.
$$\begin{bmatrix} 1 & b^{\mathsf{T}} & v^{\mathsf{T}} \\ b & B & W \\ \hline v & W^{\mathsf{T}} & V \end{bmatrix} \succeq 0$$
"Rounding scheme" = just use v

$$B_{ii} = b_i \quad \forall i$$

$$\operatorname{Tr}(V) = 1 \quad \forall i$$

$$B_{ii} \cdot r \leq \langle Z_i - \widetilde{\mu}, W_i \rangle \quad \forall i$$

2. Running the Exponential Mechanism efficiently

- Sampling q with probability $\propto \exp(\varepsilon \cdot f(X,q))$
 - Naively requires computing f(X,q) for every q in an exponentially-sized cover
- Idea: if f(X,q) is *concave*, then resulting distribution is *log-concave*
- Efficient private samplers for log-concave distributions exist
 - Need multiplicative approximation versus usual total variation guarantee
 - [Bassily, Smith, Thakurta], FOCS 2014, [Mangoubi, Vishnoi], NeurIPS 2022
- Must use continuous version of exponential mechanism
- Additionally need a Lipschitz property

Efficient Log-Concave Sampling

$$\begin{array}{lll} \textbf{Consider} & \text{SDP-VAL}(y;\widetilde{\mu},r,Z) \coloneqq \max_{v,b,B,W,V} & \text{Tr}\left(B\right) \\ & s.t. & \begin{bmatrix} 1 & b^{\mathsf{T}} & v^{\mathsf{T}} \\ b & B & W \\ v & W^{\mathsf{T}} & V \end{bmatrix} \succcurlyeq 0 \\ & v_i = y_i \quad \forall i \\ & B_{ii} = b_i \quad \forall i \\ & \text{Tr}(V) = 1 \\ & B_{ii} \cdot r \leq \langle Z_i - \widetilde{\mu}, W_i \rangle \quad \forall i \end{array}$$

Claim: SDP-VAL is both Lipschitz and concave.

Therefore we can sample $\propto \exp(\varepsilon \cdot \text{SDPVAL}(q))$ efficiently.

The plan from here...

- 1. Three Deficient Private Algorithms
- 2. Fixing the Exponential Mechanism
- 3. The Algorithm
- 4. The Bigger Picture

Overall algorithm

- 1. Find a direction v
 - Use the exponential mechanism with efficient sampling to pick v
 - Via random walk over directions that computes SDP score function at each step
- 2. Step in that direction
 - Use exponential mechanism to privately estimate the step size
- 3. Repeat

Run exponential mechanism!

Run exponential mechanism!

Take a step

Etc.

A Meta-Theorem

- High score funct
- 2.
- Lipschitz wrt do 3.
- Concave wrt do 4.
- 5. Large volume of

We give a specific m

```
Theorem 4.5 (Meta-Theorem on SoS Exponential Mechanism). Let \mathcal{C} \subseteq \mathbb{R}^n be a compact, convex
                                                                                        set and \mathcal{X} a universe of possible datasets, equipped with a "neighbors" relation. Suppose that
Suppose we have a \xi for every dataset X there exists an Archimedean and \eta-robustly satisfiable system of polynomial p^X(x,y) = \{p_1^X(x,y) \ge 0, \dots, p_N^X(x,y) \ge 0\} and a polynomial p^X(x,y), all of degree at
                                                                                        inequalities \mathcal{P}^X(x,y) = \{p_1^X(x,y) \ge 0, \dots, p_N^X(x,y) \ge 0\} and a polynomial p^X(x,y), all of degree at
                                                                                         most D, in indeterminates x_1, \ldots, x_n, y_1, \ldots, y_N such that for every neighboring dataset X' there
                                                                                        is a linear function y'(y) such that bounded sensitivity has an SoS proof:
```

 $\forall j, \mathcal{P}^{X}(x,y) \vdash_{\deg(p_{i}^{X'})} p_{j}^{X'}(x,y'(y)) \text{ and } \mathcal{P}^{X}(x,y) \vdash_{D} p^{X}(x,y) - p^{X'}(x,y') \leq 1.$

Suppose also that for every X, there are SoS proofs $\mathcal{P}^X(x,y) \vdash_D p(x,y) \leq 1/\eta$ and $\mathcal{P}^X(x,y) \vdash_D p(x,y) \leq 1/\eta$ **Bounded sensit** Suppose also that for every X, there are SoS proofs $\mathcal{P}^{X}(x,y) \vdash_{D} p(x,y) \leq 1/\eta$ and $\mathcal{P}^{X}(x,y) \vdash_{D} -p(x,y) \leq 1/\eta$ and $\mathcal{P}^{X}(x,y) \vdash_{D} -p(x,y) \leq 1/\eta$. Furthermore, suppose that the polynomials \mathcal{P}^{X} and p^{X} , and the polynomials used in the above SoS proofs, all have coefficients expressible in at most B bits.

Then for every $\varepsilon > 0$ and $D \in \mathbb{N}$ there exists an ε -differentially private algorithm which takes as input the polynomials $p^X, p_1^X, \ldots, p_m^X$ and $B, \eta > 0$, with the following guarantees: **Utility:** For every X, if there is an SoS proof of utility for X which is degree-deg(p) with

respect to p, i.e.,

 $\mathcal{P}^{X}(x,y) \cup \{p(x,y) \ge 0\} \vdash_{D,\deg_{n} = \deg(p)} \|x - x^{*}(X)\|^{2} \le \alpha^{2}$

for some vector $x^*(X) \in \mathbb{R}^n$ and $\alpha > 0$, where the coefficients of all polynomials involved in the proof are expressible with B bits, and if

main of candidates

llowing properties:

```
\frac{\operatorname{vol}(\mathcal{C})}{\operatorname{vol}(\{x \in \mathcal{C} : \exists y \ s.t. \ \mathcal{P}^X(x, y) \ and \ p^X(x, y) \ge t\})} \le r,
```

Then exp. mech. wil then the algorithm outputs x such that $||x - x^*(X)|| \le \alpha + 2^{-B}$ with probability at least 1 resp $(-\Omega(\varepsilon t))$. Running time: The algorithm runs in time

$$\operatorname{poly}\left(n^{D}, N^{D}, m^{D}, \frac{1}{\varepsilon}, \frac{1}{\eta}, \operatorname{diam}(\mathcal{C}), B\right),$$
naking at most this many calls to membership and projection oracles for \mathcal{C} .

/ point efficiently.

score functions

Framework also works for "coarse estimation" (not mentioned today)

Overall Theorem

Given an η -corrupted set of samples $X_1, \ldots, X_n \sim p$ where p has covariance $\|\Sigma\|_2 \leq 1$ and $\|E[p]\|_2 \leq R$, there exists a computationally efficient $(\varepsilon, 0)$ -DP algorithm which outputs $\hat{\mu}$ such that $\|\hat{\mu} - E[p]\|_2 \leq \alpha + O(\sqrt{\eta})$ with probability $1 - \beta$. It requires

$$n = \tilde{O}\left(\frac{d + \log(1/\beta)}{\alpha^2 \varepsilon} + \frac{d \log R + \min(d, \log R) \log(1/\beta)}{\varepsilon}\right) \text{ samples.}$$

No algorithm can succeed with fewer than

$$n = \Omega\left(\frac{d + \log(1/\beta)}{\alpha^2 \varepsilon} + \frac{d \log R + \log(1/\beta)}{\varepsilon}\right) \text{ samples.}$$

[Hopkins, K., Majid], STOC 2022

Overall Theorem

Given an η -corrupted set of samples $X_1, \ldots, X_n \sim p$ where p has covariance $\|\Sigma\|_2 \leq 1$ and $\|E[p]\|_2 \leq R$, there exists a computationally efficient $(\varepsilon, 0)$ -DP algorithm which outputs $\hat{\mu}$ such that $\|\hat{\mu} - E[p]\|_2 \leq \alpha + O(\sqrt{\eta})$ with probability $1 - \beta$. It requires

$$n = \tilde{O}\left(\frac{d + \log(1/\beta)}{\alpha^2 \varepsilon} + \frac{d \log R + \min(d, \log R) \log(1/\beta)}{\varepsilon}\right) \text{ samples.}$$

No algorithm can succeed with fewer than

$$n = \Omega\left(\frac{d + \log(1/\beta)}{\alpha^2 \varepsilon} + \frac{d \log R + \log(1/\beta)}{\varepsilon}\right) \text{ samples.}$$

[Hopkins, K., Majid], STOC 2022

Overall Theorem

Given an η -corrupted set of samples $X_1, \ldots, X_n \sim p$ where p has covariance $\|\Sigma\|_2 \leq 1$ and $\|E[p]\|_2 \leq R$, there exists a computationally efficient $(\varepsilon, 0)$ -DP algorithm which outputs $\hat{\mu}$ such that $\|\hat{\mu} - E[p]\|_2 \leq \alpha + O(\sqrt{\eta})$ with probability $1 - \beta$. It requires

$$n = \tilde{O}\left(\frac{d + \log(1/\beta)}{\alpha^2 \varepsilon} + \frac{d \log R + \log(1/\beta)}{\varepsilon}\right) \text{ samples.}$$

No algorithm can succeed with fewer than

$$n = \Omega\left(\frac{d + \log(1/\beta)}{\alpha^2 \varepsilon} + \frac{d \log R + \log(1/\beta)}{\varepsilon}\right) \text{ samples.}$$

More importantly: new results for Gaussians (including covariance)

[Hopkins, K., Majid, Narayanan], 2022

The plan from here...

- 1. Three Deficient Private Algorithms
- 2. Fixing the Exponential Mechanism
- 3. The Algorithm
- 4. The Bigger Picture

Robustness, sub-Gaussian rates, and privacy: All connected by the same technical ideas!

Are Robust and Private Estimation Equivalent?

- Privacy implies robustness...
 - As long as the private algorithm has a very high success probability
 - [Georgiev, Hopkins, NeurIPS 2022]
- Robustness implies privacy...
 - Assuming the "good" solutions have a large enough volume
 - [Hopkins, K., Majid, Narayanan, 2022]
- Close... but still some (significant) gaps

Conclusion

- First efficient pure DP algorithm with $\tilde{O}(d)$ sample complexity for mean estimation
- Also gets robustness and sub-Gaussian tails for free!
- **Open directions:**
- More connections between robust and private estimation?
- Where else can the powerful SoS framework be used for DP estimation?