Optimization algorithms for heterogeneous clients in Federated Learning

Praneeth Karimireddy, Martin Jaggi, **Satyen Kale**, Mehryar Mohri, Sashank Reddi, Sebastian Stich, Ananda Theertha Suresh

Tight analysis of FedAvg when clients are heterogeneous (non iid data)

Explain degradation of FedAvg via the '*drift*' in the client updates

Prove SCAFFOLD is resilient to heterogeneity and client sampling

Server (e.g. Google)

Clients (e.g. hospitals, phones)

[McMahan et al. 2016]

In each round,

• Some subset of clients

[McMahan et al. 2016]

In each round,

- Some subset of clients are chosen
- copy of server model is sent to clients

[McMahan et al. 2016]

In each round,

- Some subset of clients are chosen
- copy of server model is sent to clients
- model is updated using client data

[McMahan et al. 2016]

In each round,

- Some subset of clients are chosen
- copy of server model is sent to clients
- model is updated using client data
- Client updates are aggregated
- server model is updated

Federated Learning: Characteristics

data 50 何 £П

- High overhead per round
- Only a few clients participate in each round
- The data of the clients is *heterogeneous***:** i.e. data drawn from different distributions for different clients

Cross-Silo vs Cross-Device Federated Learning

Cross-Silo FL

- **Small/medium** number (2-100, typically) of total clients
- E.g. hospitals, financial organizations
- **Large amount** of data per client
- **Persistent** clients: almost always available
- **Stateful clients: clients can carry state** from round to round

Cross-Device FL

- **Very large** number (e.g. 10¹⁰) of total clients
- E.g. mobile or IoT devices
- **Small amount of data per client**
- **Transient** clients: only a fraction of clients available at any time
- **Stateless** clients: clients generally participate only once in each task

Cross-Silo Federated Learning: Formalism

Algorithms for Cross-Silo Federated Learning

Solving FL: SGD

• on each client i in \mathcal{S} , compute a large batch stochastic gradient and average them

+ Equivalent to synchronous centralized large-batch training

Solving FL: Federated Averaging (FedAvg) [McMahan et al. 2016]

• on each client i in \mathcal{S} , perform K steps of SGD

$$
\underbrace{y_i = y_i - \eta g_i(y_i)}_{\text{Repeat K times}}
$$

Server model is an average of client models

$$
x = \frac{1}{S} \sum_{i \in S} y_i \xleftarrow{\text{Aver}}^{A \text{ver}}
$$

rage over all pled clients

+ Potentially faster (performs K updates)

- different from centralized updates
- may not converge

Solving FL: SCAFFOLD

• on each client i in \int , perform K steps of SGD

New!

+ Potentially faster (performs K updates)

updates!

$$
y_i = y_i - \eta(g_i(y_i) + c - c_i)
$$

Correction term! + mimics centralized
update! update!

When does FedAvg fail?

FedAvg degrades with heterogeneous clients

Arm, San Jose, CA {vue.zhao, meng.li, liangzhen.lai, naveen.suda, damon.civin, vikas.chandra}@arm.com

Client updates: SGD vs. FedAvg

Surface of two client loss functions, and the combined function

Client updates: FedAvg

 \mathbf{X}_t

- Moves away even if we start at the optimum.
- FedAvg does not converge to optimum!
- **Requires small learning** rate to get close

 $\overline{2}$

Drift in client updates: SGD vs. FedAvg

Convergence Rates: SGD

● For strongly convex

For non-convex functions

Notation:

- R communication rounds
- K local steps
- **Total N clients**

- L smooth, μ strongly convex
- σ variance within a client

Convergence Rates: SGD vs. FedAvg

Generalizes [Li et al. 2019] and [Khaled et al. 2019]

Assume: (B,G)-similar gradients

 $\mathbb{E}_{i} \|\nabla f_{i}(x)\|^{2} \leq G^{2} + B^{2} \|\nabla f(x)\|^{2}$

For strongly convex

SGD FedAvg

Convergence Rates: SGD vs. FedAvg

• For strongly convex

SGD FedAvg

Assume: (B,G)-similar gradients

For non-convex functions

Tightest rates, uses server and client step-sizes

Lower bound: FedAvg

Theorem: For any G, we can find functions with (2, G)-similar gradients such that FedAvg for K>1 *with arbitrary step-sizes* always has error \sim Ω

$$
\geq \frac{G^2}{\mu R^2}
$$

Assume: (B,G)-similar gradients

$$
\mathcal{N} + \frac{LG^2}{\mu^2 R^2} + \exp\left(\frac{-\mu R}{L}\right)
$$

Necessary!

Quick demo: SGD vs. FedAvg

Lower is better

Lower is better

- **Linear regression**
- concrete dataset (UCI)
- 10 clients (no sampling)
- \bullet K = 10 local steps

> FedAvg needs smaller learning rate

> Slower than SGD

26

SCAFFOLD: stochastic *controlled* averaging

Main Idea: Use control variates

Main Idea: Corrected updates

$$
y_i = y_i - \eta(g_i(y_i) + \underbrace{c - c_i}_{\text{correction}}
$$
\nMinics centralized updates!

Main Idea: Updating control variates

SCAFFOLD: Algorithm

Algorithm 1 SCAFFOLD: Stochastic Controlled Averaging for federated learning 1: server input initial parameters x, control variate c, and global step-size η_a 2. client input for each i local control variate c_i , and local step-size η_l 3: for each communication round $r = 1, ..., R$ do select a subset of clients $S \subseteq \{1, ..., N\}$ $4:$ communicate (x, c) to all clients $i \in S$ $5:$ on each client $i \in S$ do $6:$ initialize local parameters $y_i \leftarrow x$ $7:$ for each local step $k = 1, ..., K$ do $8:$ compute a stochastic gradient $a_i(\boldsymbol{u}_i)$ of f_i $9:$ $\boldsymbol{y}_i \leftarrow \boldsymbol{y}_i - \eta_l \left(g_i(\boldsymbol{y}_i) - \boldsymbol{c}_i + \boldsymbol{c} \right)$ \triangleright local updates with correction $10:$ end for $11:$ $\mathbf{c}_i^+ \leftarrow (i) \; g_i(\mathbf{x})$, or (ii) $\mathbf{c}_i - \mathbf{c} + \frac{1}{Km}(\mathbf{x} - \mathbf{y}_i)$ \triangleright compute new control variate $12:$ communicate $(\Delta y_i, \Delta c_i) \leftarrow (y_i - x, c_i^+ - c_i)$ $13:$ $c_i \leftarrow c_i^+$ \triangleright update control variate $14:$ end client $15:$ $\Delta x \leftarrow \frac{1}{|S|} \sum_{i \in S} \Delta y_i$ and $\Delta c \leftarrow \frac{1}{|S|} \sum_{i \in S} \Delta c_i$ \triangleright aggregate client outputs $16:$ $x \leftarrow x + \eta_a \Delta x$ and $c \leftarrow c + \frac{|\mathcal{S}|}{N} \Delta c$ \triangleright update parameters and control $17:$ 18: end for

SCAFFOLD: Quick demo

- **Linear regression**
- concrete dataset (UCI)
- 10 clients (no sampling)
- \bullet K = 10 local steps

> SCAFFOLD works with same learning rate as SGD

> Faster than SGD!

SCAFFOLD: Client sampling

- Updates of every client mimics centralized updates.
- Few #clients works, as long as control variates are accurate.
- Hence, very robust to client sampling.

Different view: SAGA is a special case of SCAFFOLD with client sampling

SCAFFOLD: Variance reduced convergence Rates Notation:

• For strongly convex functions

$$
\mathcal{N}+\exp\left(-\min\left\{\frac{\mu}{L}\,,\frac{S}{N}\right\}R\right)
$$

For non-convex functions

- R communication rounds
- S out of N clients sampled
- \bullet L smooth, μ strongly convex

> Better than FedAvg!

● **Each update** mimics a centralized update => local steps should help.

● In worst case not true [Arjevani & Shamir, 2015] :(

Possible if similar Hessians!

 δ - BHD (Bounded Hessian Dissimilarity)

$$
\|\nabla^2 f_i(x) - \nabla^2 f(x)\| \le \delta
$$

And is δ -weakly convex.

Note that

 $\delta \leq L$, and typically $\delta \ll L$

Assume: - BHD, quadratics

• For strongly convex functions

$$
\mathcal{N} + \exp\left(\frac{-\mu RK}{L + (\mu + \delta)K}\right) \approx \mathcal{N} + \exp\left(\frac{-\mu R}{\mu + \delta}\right)
$$

For non-convex functions

$$
\mathcal{N} + \frac{L + \delta K}{RK} \approx \mathcal{N} + \frac{\delta}{R}
$$

Notation:

- R communication rounds
- All N clients participate
- K local steps
- \bullet L smooth, μ strongly convex

Assume: - BHD, quadratics

• For strongly convex functions

$$
\text{ > Best to take } K \approx \frac{L}{\delta}
$$

$$
\mathcal{N} + \exp\left(\frac{-\mu RK}{L + (\mu + \delta)K}\right) \approx \mathcal{N} + \exp\left(\frac{-\mu R}{\mu + \delta}\right)
$$

 $>$ We replaced L with δ in the rates (typically $\delta \ll L$)

For non-convex functions

$$
\mathcal{N} + \frac{L + \delta K}{RK} \approx \mathcal{N} + \frac{\delta}{R}
$$

> First rate to characterize improvement due to local steps!

Quick demo on scalar quadratics

- Scaffold is unaffected by G
- Larger K is better
- $K=2$ is 2 times faster
- \bullet K=10 is only 4 times better

Experimental Setup

- Extended MNIST (balanced) dataset
- Multi-class logistic regression (47 classes)
- Partitioned into N clients
- Sorted by labels and then 'slightly shuffled' before splitting

Performance of SCAFFOLD

Similarity = 0, 1 Epoch, #sampled clients = 20, total clients = 400°

Test accuracy, 10 Epochs, #sampled clients = 20, total clients = 100°

Effect of number of clients

SCAFFOLD with 5 clients is better than FedAvg with 50!

- > Total #clients = 400
- > Total #categories = 47
- > 1 Epoch per round
- > Similarity = 0

- Degradation of FedAvg is due to the client drift. If you use FedAvg, use separate server and client step-sizes.
- Why you should use SCAFFOLD:
	- Provably converges faster than SGD and FedAvg
	- Resilient to heterogeneity and client sampling
- **Main limitation:** requires maintaining client state, so applicable only to cross-silo FL

Cross-Silo vs Cross-Device Federated Learning

Cross-Silo FL

- **Small/medium** number (2-100, typically) of total clients
- E.g. hospitals, financial organizations
- **Large amount** of data per client
- **Persistent** clients: almost always available
- **Stateful clients: clients can carry state** from round to round

Cross-Device FL

- **Very large** number (e.g. 10¹⁰) of total clients
- E.g. mobile or IoT devices
- **Small amount of data per client**
- **Transient** clients: only a fraction of clients available at any time
- **Stateless clients: clients generally** participate only once in each task

Cross-device Federated Learning: Formalism

Sum over client data

parameters

Expectation over (possibly infinitely many) clients

Client loss function over the parameters and data

Algorithms for Cross-Device Federated Learning

Solving FL: SGD with (server) momentum

[Assume only 1 client per round]

+ Convergence guaranteed

$$
x = x - \eta * (\nabla f_i(x) + \beta * m)
$$

Update server
parameters

- Communicates every update round

 $m = \nabla f_i(x) + \beta m$ Update server momentum

Solving FL: SGD with server momentum

[Assume only 1 client per round]

$$
y_i = y_i - \eta \nabla f_i(y_i)
$$

+ Convergence guaranteed

- Communicates every update round

$$
x \leftarrow x - \eta(\nabla f_i(y_i) + \beta m)
$$

Update server parameters

$$
m = \nabla f_i(x) + \beta m
$$

Update server momentum

Solving FL: FedAvg with momentum

• Starting from x, run K local updates

$$
\underbrace{y_i = y_i - \eta \nabla f_i(y_i)}_{\text{Repeat K times}}
$$

 \bullet Use $(x - y_i)$ as a pseudo-gradient.

$$
x = x - \eta * (\{x - y_i\} + \beta * m)
$$

Update server parameters

[McMahan et al. 2016, Hsu et al. 2019, Reddi et al. 2020]

+ Communicates only every K updates

- bad convergence due to client drift (though momentum helps!)

Solving FL: Mime with momentum

Apply server momentum locally in the clients

$$
y_i = y_i - \eta * (\nabla f_i(y_i) + \beta * m) \over \text{Repeat K times}
$$

Momentum is computed globally (at server) and applied

+ Communicates only every K updates

+ Reduce client drift using (fixed) server momentum!

+ Extends to Adam, etc.

locally (at clients)
\n
$$
m = \nabla f_i(x) + \beta m
$$

Update server momentum

Solving FL: Mime with momentum

Figure 1: Client-drift in FEDAVG (left) and MIME (right) is illustrated for 2 clients with 3 local steps and momentum parameter $\beta = 0.5$. The local SGD updates of FEDAVG (shown using arrows for client 1 and client 2) move towards the average of client optima $\frac{x_1^* + x_2^*}{2}$ which can be quite different from the true global optimum x^* . Server momentum only speeds up the convergence to the wrong point in this case. In contrast, MIME uses unbiased momentum and applies it locally at every update. This keeps the updates of MIME closer to the true optimum x^* .

Mime framework: adapting optimizers to FL setting

Base optimizer updates: given gradient *g* and current internal state *s*

(e.g. momentum, Adagrad/Adam accumulators, etc.)

$$
\begin{aligned} &\boldsymbol{x} \leftarrow \boldsymbol{x} - \eta \, \mathcal{U}(\boldsymbol{g}, \boldsymbol{s}) \,, \\ &\boldsymbol{s} \leftarrow \mathcal{V}(\boldsymbol{g}, \boldsymbol{s}) \,. \end{aligned}
$$

E.g. SGD with momentum:
\n
$$
x \leftarrow x - \eta(g + \beta m)
$$

\n $m \leftarrow g + \beta m$

Mime server update: update state *s* using gradients from clients:

$$
\boldsymbol{s} \leftarrow \mathcal{V}\Big(\tfrac{1}{|\mathcal{S}|}\sum_{i \in \mathcal{S}} \nabla f_i(\boldsymbol{x}),~\boldsymbol{s}\Big)
$$

Mime*lite* **client update:** obtain *x* and state *s* from server and repeat K times starting from $y = x$:

$$
y \leftarrow y - \eta \mathcal{U}\Big(\nabla f_i(y, \xi), s\Big)
$$

Mime framework: adapting optimizers to FL setting

Base optimizer updates: given gradient *g* and current internal state *s* (e.g. momentum, Adagrad/Adam accumulators, etc.)

$$
\begin{aligned} &\boldsymbol{x} \leftarrow \boldsymbol{x} - \eta \, \mathcal{U}(\boldsymbol{g}, \boldsymbol{s}) \,, \\ &\boldsymbol{s} \leftarrow \mathcal{V}(\boldsymbol{g}, \boldsymbol{s}) \,. \end{aligned}
$$

Mime server update: update state *s* using gradients from clients:

$$
\boldsymbol{s} \leftarrow \mathcal{V}\!\left(\tfrac{1}{|\mathcal{S}|}\sum_{i \in \mathcal{S}} \nabla f_i(\boldsymbol{x}),~\boldsymbol{s}\right)
$$

Mime client update: obtain *x* and state *s* from server and repeat K times starting from *y* = *x*:

$$
y \leftarrow y - \eta \mathcal{U}\Big(\nabla f_i(y,\xi) - \nabla f_i(x,\xi) + \frac{1}{S}\sum_{j \in S} \nabla f_j(x), s\Big)
$$

55

Algorithm 1 Mime and MimeLite

input: initial x and s, learning rate η and base algorithm $\mathcal{B} = (\mathcal{U}, \mathcal{V})$ for each round $t = 1, \dots, T$ do sample subset S of clients **communicate** (x, s) to all clients $i \in S$ communicate $c \leftarrow \frac{1}{|S|} \sum_{i \in S} \nabla f_i(x)$ (only for Mime) on client $i \in S$ in parallel do initialize local model $y_i \leftarrow x$ for $k = 1, \dots, K$ do sample mini-batch ζ from local data $y_i \leftarrow y_i - \eta \mathcal{U}(\nabla f_i(y_i;\zeta) - \nabla f_i(x;\zeta) + c, s)$ (Mime) $y_i \leftarrow y_i - \eta \mathcal{U}(\nabla f_i(y_i; \zeta), s)$ (MimeLite) end for compute full local-batch gradient $\nabla f_i(\boldsymbol{x})$ communicate $(\mathbf{y}_i, \nabla f_i(\mathbf{x}))$ end on client $\boldsymbol{x} \leftarrow \frac{1}{|S|} \sum_{i \in S} y_i$, and $\boldsymbol{s} \leftarrow \mathcal{V}\left(\frac{1}{|S|} \sum_{i \in S} \nabla f_i(\boldsymbol{x}), \boldsymbol{s}\right)$ end for

Analysis

● **G²** - Bounded Gradient dissimilarity:

$$
\mathbb{E}_{i \sim \mathcal{D}} \|\nabla f_i(x) - \nabla f(x)\|^2 \leq G^2
$$

● □- Bounded Hessian dissimilarity:

$$
\|\nabla^2 f_i(x;\xi_i) - \nabla^2 f(x)\| \le \delta
$$

Convergence rates

 \overline{a}

Figure 3: Server-only, FedAvg, Mime, and MimeLite with SGDm (left) and Adam (middle) run on EMNIST62 (top) and CIFAR100 (bottom). Mime and MimeLite have very similar performance and are consistently the best. FedAvg is often even worse than the server-only baselines. Also, Mime makes better use of momentum than FedAvg, with a large increase in performance (right).

• Momentum injects global information and helps reduce client drift.

● Compute momentum globally at server, apply it during each client update.

• Usefulness of local steps depends on Hessian variance.

Thank You.

Questions?