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Research Background..

* We have focused on explainable human-Al
interaction.

e Our settinﬁ involves collaborative problem
solving, where the Al agents provide decision
support to the human users in the context of
explicit knowledge sequential decision- _
making tasks (such as mission planning) Al magazine

* In contrast, much work in social robotics and HRI

has focused on tacit knowledge tasks (thus
making explanations mostly moot)

* We assume that the Al agent either learns the
human model or has prior access to it.

* We have developed frameworks for proactive
explanations based on model reconciliation
as well as on-demand foil-based explanations

1\71,‘5: Allows the agent to anticipate human

expectations, in order to

* conform to those expectations

* explain its own behavior in terms of
those expectations.

MR
M} and MR are

Expectations on Models
MH and MR

They don’t have to be
executable

* We have demonstrated the effectiveness of e
our technloLues with systematic (IRB
uman subject studies

approved)

Explainable Human-AlI In-
teraction: A Planning Per-
spective

s
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Viewpoint

Polanyi’s Revenge and
AI’s New Romance
with Tacit Knowledge

Artificial intelligence systems need the wisdom to know when to take

SORTBY: NEWEST OLDEST RELEVANCE

What just happened? Therise of
interest in artificial intelligence

Twitter @rao2z

TECHNOLOGY

Perception won't be reality, once Al

advice from us and when to learn from data.

N HIS 2019 Turing Award Lecture,
Geoff Hinton talks about two
approaches to make computers
intelligent. One he dubs—
tongue firmly in cheek—
“Intelligent Design” (or giving task-
specific knowledge to the computers)
and the other, his favored one, “Learn-
ing” where we only provide examples to
the computers and let them learn. Hin-
ton’s not-so-subtle message is that the
“deep learning revolution” shows the
only true way is the second.
Hinton is of course reinforcing the
Al zeitgeist, if only in a doctrinal form.
Artificial intelligence technology has
captured popular imagination of late,
thanks in large part to the impressive
feats in perceptual intelligence—in-
cluding learning to recognize images,
voice, and rudimentary language—and
bringing fruits of those advances to ev-
eryone via their smartphones and per-
sonal digital accessories. Most of these
advances did indeed come from “learn-
ing” approaches, but it is important to
1mmdercetand the advancec have come in

“Human, grant me the serenity to accep
things | cannot learn, data to learn the t|
I can, and wisdom to know the differenc

cioned—Ffor which we do have exnlicit

DOI:10.1145/3546954

can maninulate what we see

https://cacm.acm.org/blogs/blog-cacm

Changing the Nature
of Al Research

Subbarao Kambhampati considers how artificial intelligence

may be straying from its roots.

Subbarao
Kambhampati

Al as (an Ersatz)
Natural Science?
https://bit.ly/3RcfSNW
June 8, 2022

In many ways, we are living in quite
a wondrous time for artificial intel-
ligence (AI), with every week bring-
ing some awe-inspiring feat in yet
another tacit knowledge (https://bit.
ly/3qYrAOY) task that we were sure
would be out of reach of computers
for quite some time to come. Of par-
ticular recent interest are the large
learned systems based on trans-
former architectures that are trained
with billions of parameters over
massive Web-scale multimodal cor-
pora. Prominent examples include
large language models (https://bit.
ly/3iGdekA) like GPT3 and PALM that
respond to free-form text prompts,
and language/image models like
DALL-E and Imagen that can map

teXt RIOIMPLS 12 PO ealistE, IR ess «
‘ for which we onlv have tacit kn

tal ways. Just the other day, some re-
searchers were playing with DALL-E
and thought that it seems to have de-
veloped a secret language of its own
(https://bit.ly/3ahH1Py) which, if we
can master, might allow us to inter-
act with it better. Other researchers
found that GPT3’s responses to rea-
soning questions can be improved by
adding certain seemingly magical in-
cantations to the prompt (https://bit.
ly/3aelxmlI), the most prominent of
these being “Let’s think step by step.”
It is almost as if the large learned
models like GPT3 and DALL-E are
alien organisms whose behavior we
are trying to decipher.

This is certainly a strange turn of
events for AI. Since its inception, AI
has existed in the no-man’s land be-
tween engineering (which aims at
designing systems for specific func-
tions), and “Science” (which aims to
discover the regularities in naturally
occurring phenomena). The science

LRpart of Al came frorvts Qrim1 pre-
owl-

havior) rather than on insights about
natural intelligence.

This situation is changing rapid-
ly—especially as AI is becoming syn-
onymous with large learned models.
Some of these systems are coming to
a point where we not only do not know
how the models we trained are able to
show specific capabilities, we are very
much in the dark even about what ca-
pabilities they might have (PALM’s al-
leged capability of “explaining jokes”
—https://bit.ly/3yJklm4— is a case in
point). Often, even their creators are
caught off guard by things these sys-
tems seem capable of doing. Indeed,
probing these systems to get a sense
of the scope of their “emergent behav-
iors” has become quite a trend in AI
research of late.

Given this state of affairs, it is in-
creasingly clear that at least part of Al is
straying firmly away from its “engineer-
ing” roots. It is increasingly hard to
consider large learned systems as “de-
siened” in the traditional sense of the
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PP Two months back, a company called OpenAl released its chatbot, ChatGPT, Apple Watch ban

storm with ‘national
divorce’ comments to the public. ChatGPT is a so-called Large Language Model (LLM) that is




Multi-objective

Highest net-benefit [AAAI 2004; ICAPS 2005

IJCAI 2005; IJCAI 2007]
Cheapest plan
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This article was published on July 31, 2022

Planning continues to be a shibb

d I'\]-V > ¢s > arXiv:2206.10498 Large language models can’t plan, even
if they write fancy essays

Computer Science > Computation and Langu: ) )
Large language models perform very poorly at tasks that require methodical planning

e Even though LLM’s can slice ~ soeeins

Large Language Models Still C:

and dice explain jokes, they Planning and Reasoning about

Karthik Valmeekam, Alberto Olmo, Sarath Sreec

[} ’ I
St I C a l I t p a l I The recent advances in large language models (LLMs
L

From GPT-3 to PaLM, the state-of-the-art performai

new large language model. Along with natural langu.

whether such mode! =~ = ° )
* New Captcha?

interest in devel(’pir > As initial conditions I hav

benchmarks seem n , the yellow block is c!
orange block, the red I

Popular on Neural

Synthetic datais the safe, low-
cost alternative to real data that
we need

A new ‘common sense’ test for Al
could lead to smarter machines

Climate risks are a major
business threat - here's how Al
can help

Confused Replika Al users are
standing up for bots and trying
1o bang the algorithm

New experiment demonstrates

these benchmarks ¢ and the yellow block is Y - S — — that reality might actually be
* Of course, they can be used R
) y Plan Reuse
We showcase an instance and the respective pl' - This article i part of our coverage of the latest in Al research

a S h e u ri St i C g u i d a n C e fo r a n z;u:rl;pvlv;th an instance which requires only a certain prefix of the plan provided in the V7oUu =17

o Plan Generalization
u n d e rl I n S O u n d | a n n e r We showcase an instance and the respective plan as an example and prompt the ma- 33/500 = 6.6%

y g p chine with a new instance. The plans for both the instances can be generated by a =0
fixed program containing loops and conditionals.

¢ B U t h ey, p retty m U C h a nyt h I n g V(?/gaslhlc:f:/.:;gtrl} iet?sstzlrllil;gand the respective plan as an example and prompt the ma- | 3/500 = 0.6%

o . ) chine with a new instance.

can be a “heuristic”.. Optimal Planning

We showcase an instance, the respective optimal plan and the associated cost as an | 1/500 = 0.2%

example and prompt the machine with a new instance.

: Replanning

¢ G ra m m a r VS IVI e a n I n g . We showcase an instance, the respective plan and present an unexpected change of — 0%
the state. We then also present a new plan from the changed state. Finally, for a new 0/500 = 0%

instance we repeat the same except we ask the machine for the new plan.

Table 1: LLM Assessment Suite Results on Davinci (base version)

3 (pick-up orange)

37 (stack orange red)

38

39 SUCCESS

Listing 2: Goal directed reasoning
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GPT-3, Instruct-GPT3, BLOOM
showcase dismal performance on

planning tasks in Blocksworld
domain.

Plan Generation

Large language models can’t plan, even
if they write fancy essays

Large language models perform very poorly at tasks that require methodical planning

July 31,2022 - 8:50 pm

Popular on Neural

1 Concrete is one of the world's
most harmful materials.
Graphene could change that

2 Al translation firm unveils
‘world-first’ timeline to
singularity

n Corrett nterrett

3 Confused Replika Al users are
standing up for bots and trying
to bang the algorithm

PRELIMINARY HUMA

What to expect from Al in 2023

Plon Generation e

5 Quantum computing startup
eyes mainstream adoption after
£30m investment

in the fiesta at TNW V.

uy your tickets to TNW Valéncia today!

This article is part of our coverage of the latest in Al research.

Large language models like GPT-3 have advanced to the point that it has be-

come difficult to measure the limits of their capabilities. When you have a very
large neural network that can generate articles, write software code, and en-

Ben Dickson

gage in conversations about sentience and life, you should expect it to be able
to reason about tasks and plan as a human does, right?

Wrong. A study by researchers at Arizona State University, Tempe, shows that
when it comes to planning and thinking methodically, LLMs perform very poorly,
and suffer from many of the same failures observed in current deep learning
systems.

L At
Scan for the poper

Get your tickets for TNW Valencia in March!
The heart of tech is coming to the heart of the Mediterranean
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Ignoring) Humans: Alvs OR 2

shutterstock com - 1195798915

The Al Way: If you stay far enough away from The OR Way: We will send one of our guys (the
‘em (e.g. Mars) or in adversarial stance with ‘em  hORse whisperer) along with our methods—and
(e.g. Zero-Sum games), you'll be fine.. the guy will do the “human interaction”

e or drag them into the land of Al..  ..and train our guys to learn to deal with humans

DECISION ANALYSIS imm

Vol. 9, No. 3, September 2012, pp. 274-292
ISSN 1545-8490 (print) | ISSN 1545-8504 (online) http://dx.doi.org/10.1287/deca.1120.0238
©2012 INFORMS

Al's Curious Ambivalence to humans.. Communicating Analytic Results:

A Tutorial for Decision Consultants

* Our systems seem happiest
* either far away from humans

* or in an adversarial stance with
humans

Jeffrey M. Keisler
Management Science and Information Systems Department, College of Management, University of Massachusetts Boston,
Boston, Massachusetts 02125, jeff.keisler@umb.edu

Patrick S. Noonan

Goizueta Business School, Emory University, Atlanta, Georgia 30322, patrick.noonan@bus.emory.edu

Good analysis alone may not achieve the goals of decision analysis (DA) engagements. Good communication
of the results of that analysis can help stakeholders understand, accept, and implement the recommended
course of action. Practitioners can use decision-analytic principles when considering the decision of how to
communicate results themselves. From this perspective, we consider a range of questions to ask in preparing
for communication with the client and other stakeholders. We review standard communication practices in DA
engagements. The standard practice can be improved by drawing on insights from other areas of management
practice. Decision analysis has both technical and organizational features, and we discuss ways to deal with the
conceptual and expressive challenges this presents. This pragmatic tutorial provides a starting point for decision
analysts to develop both technical communication skills and organizational communication skills.

You want to help humanity,
it is the people that you just can t stand...

Key words: communication of decision analysis insights; modeling; analysis; decision analysis; decision
consulting

History: Received on December 28, 2011. Accepted on February 14, 2012, after 1 revision. Published online in
Articles in Advance August 3, 2012.




Talk Overview

* Part 1: Why and how do humans exchange
explanations? Do Al systems need to?

* Part 2: Using Mental Models for Explainable

Explair Explainal

Subbarao Kambhay

Behavior in the context of explicit knowledge S e i i S
tasks (think Task Planning) > |ooee (S [ M

* The 3-model framework: M% M H wk
» Explicability: Conform to M’,f

« Explanation: Reconcile M % to MR

* Extensions: Foils, Abstractions, Multiple Humans.. e

* Part 3: Supporting explainable behavior even
without shared vocabulary

» Symbols as a Lingua Franca for Explainable and
Advisable Human-Al Interaction
* Post hoc symbolic explanations of inscrutable reasoning
* Accommodating symbolic advice into inscrutable systems

M=

Su ao Kambhampati
~ (Joint with S.a“rath Sreedharan, Mudit Verma, Yantian Zha & Lin Guan)
R o - . | omputing & Al




Talk Overview

* Part 1: Why and how do humans exchange
explanations? Do Al systems need to?

* Part 2: Using Mental Models for Explainable
Behavior in the context of explicit knowledge
tasks (think Task Planning)

 The 3-model framework: ME, mH Mﬁ

e Explicability: Conform to Ml,f

* Explanation: Reconcile M to MR

e Extensions: Foils, Abstractions, Multiple Humanes..

* Part 3: Supporting explainable behavior even
without shared vocabulary

Subbarao Kambhampati

([ Sym bO|S aS a Lingua Franca for EXpIainabIe and — (JointwithSarathSreedharan,Mudithr—mzav,YarltianZha&LinGuan)
Advisable Human-Al Interaction JIRP & e

* Post hoc symbolic explanations of inscrutable reasoning
 Accommodating symbolic advice into inscrutable systems




How do Humans Exchange Explanations?

* Pointing (Tacit) Explanations
* Pointing to specific features of the object/image etc.

* Feasible sometimes for one-shot classification
decisions on spatial data (point to the right parts
of the image/object)

* “Thisisis a Red Striped Butterfly because...(Show)”

* But quite unwieldy [“High Band Width AND
Cognitive Load”] for explaining sequential
decisions on spatio/temporal data (as it will
involve pointing to the relevant regions of the
space-time tube..)

* ”The reason | took this earlier United Flight is
because... (point to the video of your life?)”

* Symbolic (Explicit) Explanations

* Feasible for both spatial and spatio-temporal
data and one-shot or sequential decisions

* Requires that the humans share a symbolic
vocabulary (..or learn one to get by..)

* Typically, pointing explanations are used for
tacit knowledge tasks, and symbolic ones for
explicit knowledge tasks.

 However, over time, we tend to develo

symbolic vocabulary for exchanging exp'loanations
even for tacit knowledge tasks.

* Consider, for example, Pick-and-Roll in Basketball..

* Symbolic explanations are not just “compact”
but significantly reduce cognitive load on the
receiver

* (even though the receiver likely has to re-create

the space-time tube versions of those
explanations within their own minds)




But (Why) Do Al Systems have to give Explanations?

* Internal (Self) explanations within the system
* “Soliloquy”
* Explanations (e.g. “nogoods”) to guide search
* Explanations to guide learning: EBL

* External Explanations

* To other systems
» (offering proofs of correctness of decisions)

 To the humans in the loop

* Can’t be a “Soliloquy” —unless the humans have no life but to
understand the system’s mutterings..

* Explanation depends on the role of the human

* “Debugger”: Humans who are willing to go into the land of the machine
just to figure out what it is doing

e “End User”—Observer/Collaborator/Student/Teacher: Want rationales
for the machine decisions that are comprehensible to them (without
having to read huge manuals)

* (XAl has typically been about Explanations to Humans in
the loop—but is often confused with techniques more
relevant to the other settings)

Facebook malkes
millions of
reaemmencl&&mms
er day, apnd no
n as?is. 4%.1' an
explanation:
--A Faceboolk
Al Blgwig



Use cases for Human-In-The-Loop Explanations

* Debugger trying to flag and correct the system’s behavior
e Observer (Lay)

e Observer (Expert)

 Collaborator (on a joint task)

e Student (Machine is in a teaching role)

. .. ] Explanations: Given to a specific human
* Teacher (Machine is in a learning role)

Interpretability: Can humans make sense of it?

° Task: One ShOt VS. Sequential decision Certificates of Correctness: Given to a human’s Al

* Interaction: One epoch vs. longitudinal



Requirements on Explanations

* Comprehensibility
* Cognitive load in parsing the explanation [Is the explanation in a form/level that is accessible
to the receiving party]

e Communicability
* Ease of exchanging the explanation

* Soundness
* A guarantee from the other party that this explanation is really the reason for the decision

* Related: Guarantee (to stand behind the explanation)
* We expect the decision to change when the explanation is falsified

Satisfaction (with the explanation)
* Unfortunately, this is a slippery slope. “Sweet Little Lies” start right here..
* Very important not to do an “end to end” learning on “what explanations seem to make people happy”!
* GDPR and GPT3!



Talk Overview

* Part 1: Why and how do humans exchange
explanations? Do Al systems need to?

* Part 2: Using Mental Models for Explainable
Behavior in the context of explicit knowledge
tasks (think Task Planning)

* The 3-model framework: M*, MH Mf
» Explicability: Conform to Mﬁ

* Explanation: Reconcile M} to MR

e Extensions: Foils, Abstractions, Multiple Humans..

* Part 3: Supporting explainable behavior even
without shared vocabulary

Subbarao Kambhampati
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* Post hoc symbolic explanations of inscrutable reasoning
 Accommodating symbolic advice into inscrutable systems




What does it take for an Al
agent to show explainable
oehavior in the presence of
numan agents?

Managing Mental Models

Where will Sally look for her ball?




Sequential decision setting

Let’s start with the tale of three
models..

We will think of Models as
<I,G,A0,1m™>

| Initial state

G Goals

tuck A Actions The development is largely
agnostic to the specific framework

move

(hand-tucked)

(crouched) )

O Observation model

(crouched)

 Plan —> Relational representations PDDL
— Dynamic Programming Rep MDP/RL

crouch



Start State @—> ai aAp —o o o— an @ Goal State

Given — S, G and set of actions {a;} => Agent’s Model MR
Find — sequence of actions or plan T = (a,, a,, ..., a,,) that transforms S to G.

Classical Planning




Start State @—* af aé’—»o o o— Ay % Goal State

Given — S, G and set of actions {a;} => Agent’s Model MR
Find — sequence of actions or joint plan = = (a, a,, ..., a,,) that transforms S to G™.

Classical Planning




Start State @—* af a’ZLI—»o o o— Ay @ Goal State

ME: Allows the agent to anticipate
human behavior, in order to

e assist [IROS 2015]

* avoid [AAMAS 2016]

* team, etc.

o)




Intention Recognition with Emotive




Intention Projection with Hololens
D>

[IROS 2018]



Start State @—> a’f a‘ZL’—»o ©o— Qapn 4’@ Goal State

MF: Allows the agent to anticipate human
expectations, in order to

e conform to those expectations

e explain its own behavior in terms of
those expectations.

M and Mf are
Expectations on Models
M and MR

They don’t have to be
executable




Model differences with human in the loop

* The robot’s task model may differ from the human’s expectation of it

» Consequence =2
* Plans that are optimal to the robot may not be so in human’s expectation
= “Inexplicable” plans

M,’f: Allows the agent to anticipate human

expectations, in order to

* conform to those expectations

* explain its own behavior in terms of
those expectations.

o Ta




Model differences with human in the loop

* The robot then has two options —conform to expectations or change them
* Explicable planning — sacrifice optimality in own model to be explicable to the human

* Plan Explanations — resolve perceived suboptimality by revealing relevant model differences
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Explicable Plan

Given a goal, the objective is to find an explicable robot plan:

argmin[cost (T rrp )J—I— « {d’iSt(ﬂ'MR » TM%, )J

7TMR /

Cost of robot plan Distance between robot plan and
human’s expectation of robot plan




Explanations as Model Reconciliation

A Human-Aware Planning (HAP) Problem is a tuple (MR,Mﬁ) 111%.»7i;"‘» Plan Explanations via

k) Model Reconciliation
-

where MR = (DR IR GR) is the planner’s model of the planning problem,
and M = (DE IR, GR) is the human’s understanding of the same.

C(mt, M) is the cost of solution (plan) of model M and C,, is cost of the optimal plan. l ﬁ
ME

Explanation € for plan © = |

(1) R « MF + 6\

— is a model update to the human

(2) CCr, MF) = € L
—> 1 is optimal in robot’s model =
3) C(m, M) = Crr B
- 1 is also optimal in the updated human model " Gemeration 7~ Tact

[IJCAI 2017; JCAI 2019]






Model Space Search for Model Reconciliation

Figure 3 contrasts MCE with MME search. MCE search
starts from M, computes updates M towards M*% and re-

turns the first node (indicated in orange) where C'(7*, M ) =
C}A\. MME search starts from M?* and moves towards

M 1t finds the longest path (indicated in blue) where
C(rm*, M) = C%; for all M in the path. The MME (shown

in green) is the rest of the path towards M.



Expectation-Aware Planning:

Plan Explanations

A Unifying Framework E e

| Reconciliation

* Planning in the presence of external
expectations

* The Robot has both standard “ontic”
actions and “explanatory” actions (e.g.
speech acts)

* |t can model the effect of its actions on
both its state, and the human’s mental
State //"

* Planning is “multi-model”-—the Al agent |
uses both its model, and the human’s
expectation model to generate a course of
action that contains both explanatory and -
ontic actions S, g

Plan
Generation

56



Expectation-Aware Planning

Expectation-aware planning problem consists ¥ = (Mg, M})
MR = (F, Ag, I, Gr) (Agent model)

Human'’s
Robot Human belief about
State_1 State_1’ the model

Ontic action/Explanatory action

Robot Human H}Jr;ﬁan s
State_2 State 2’ belief about
— = the model

ME = (F, A%, I}, G}) (User’'s model of the Agent)

The solution for a expectation-aware planning problem can be thought
of as a tuple of the form (EI/’, nlp)

E™- (Explanatory) Information regarding the robot model

¥- Agent plan
Such that

¥ F R ¥ Gy and T¥ F, & Gg

Purely Explicable plan
E¥Y = ¢, ¥ is executable in My
Explanation

¥ is selected for Mz and E¥ informationsabout Mg




Compilation to Classical (Single agent) Planning

(:action pickup (:action pickup
:parameters (?x - block) :parameters (?x - block)

:precondition (and (ontable ?x) (handempty) )

)
)
Robot’s model .
Human’s Expectation about the model

) ) Meta-fluent controlled
(action pickup via an explanatory

:parameters (?x - block) action

:precondition (and (ontable ?x) (handempty)

:effect (and (not (ontable ?x) B,(ontable ?x)) {holding ?x)

(By(holding ?x)) )
)

Compilation

uman’s belief about

58



How does the Al Agent get the Human’s Model?

* |In some cases (e.g. USAR scenario), the human and Al agent will
start with the same shared model. All that is needed will be
tracking the model drift

* Even if the robot doesn’t know the model M}¥ with certainty, it M and IR are
can reason with multiple possible models [IC,I&PS 2018] Expectations on Models

* |[n other cases, the Al agent does need to learn the human mental M and M*
models [AAMAS 2015; AAMAS 2016]

 Note however that while MF can be learned from prlor behavior traces of
the human, M} requires human’s feedback on robot’s behavior traces.

* Even when there are vocabulary differences between human and
robot models, we can learn the human expectations rather than
the actual model that results in those expectations

 Model-free Explicability [ICRA 2017]
 Model-free Explanation [IJCAI 2019]

They don’t have to be
executable



Proactive Help Can

Do we really know what _ _
be Disconcerting!

(sort of assistance)
humans want?

'. -
- [[TEXCLU AT o I-

bc"a(h INVESTIGATION FOCUSED ON TESLA AUTOPILOT | obc

’;\

(11:02 JEES

Solution: IRB-approved Systematic Human Subject Studies



Human-Factors Evaluation of the Model Reconciliation Process

Home

Starting position

Map available

to the external Goal

Map
Annotations

Waypoint

Plan of the
internal agent

Rubble (NOT removable)

Rubble (removable)

Explanations provided Path taken

by the internal

Rubble (does not exist)

Rubble (removed)

Map used by Request
the external
for plan
Plan currently Problem Number EIJ2F)
) under progress
action: move pz pob proe Req uest for o Score €0 Score
. Explain Round Score 3 Boa rd
explanation ‘ Time Remaining 1m 225
Evaluate Evaluate

Pass!

plan plan

Pass on this problem, go to next.

[HRI1 2019; HCI Journal 2020]



Human-Factors Evaluation of the Model Reconciliation Process

Case-1: How do humans explain the same scenarios?

s Starting position
You are in a search and rescue scenario with other members of a disaster response team. The map on the left shows your .
map of the environment and the path you have come up with to go from your current position to the next search location. G .
However, the original map of the building has changed due to the disaster. The map your teammates have is the original map M a p
SCe na ri o of the building -- shown on the right. Update their map by annotating changes from your own to explain to your teammates )
(1) Why your plan works and (2) Why it is the best path you could come up with. VWA Rubble (NOT removable) An n Otat|o ns
But beware!! Communication is expensive so while explaining only use the MINIMUM AMOUNT OF e AN .
INFORMATION you think is useful for your teammate to understand your plan. i :
b—e  Patht 1for .
Annotate
Map 10/12 with your

explanations

Your (internal

agent) map and q

your plan in it

Your

teammate’s
map

(a) Study-1:C1 (b) Study-1:C2

Figure 4: Different types of explanations for Study-1:C1;C2.

[HRI 2019; HCI Journal 2020]



When (& Why) do Humans ask for
Explanations from each other?

* When they are confused/surprised by the behavior (It is not what they
expected--thus inexplicable).

* Note that the confusion is orthogonal to “correctness”/”optimality” of the behavior.
You may well be confused/surprised if your 2 year old nephew is able to give the
exact distance between the Earth and the Sun.

« M7} istoo different from MF
* Explanation here helps reconcile the expectations
* Explanation is an attempt by the Al agent to get Mﬁ closer to MR

* When they want to teach the other person and/or make sure that the
decision was not a fluke and that the other person really understands the
rationale for their decision.

* Using the explanation to localize the fault, as it were..

* Note that the need for explanation is dependent on one person’s model of
the other person’s capabilities/reasoning

e Customized explanations (A doctor explains her decision to her patient in one way
and to her doctor colleagues in a different way)

* Explanation is needed when M;f (and not M) is too different from MFE; they are
customized to M}

* Asthe models get reconciled, there is less need for explanations in subsequent
interactions!

* Explanations are connected to trust. We ask fewer explanations from
people whom we trust

(There is also the whole “explanation of natural phenomena w.r.t scientific theories”)



(Many) Extensions of the basic framework

Supporting model reconciliation in non-PDDL
settings [IJCAI 2019; ICAPS 2020]

* Relating other formulations of interpretable
behavior [ICAPS 2019; 1JCAI 2020]

* Handling foils & models at different levels of

abstraction [IJCAI 2018]
* Explaining unsolvability [IJCAI 2019]

* Handling multiple human agents [ICAPS 2018;
IROS 2021]

* Handling incomplete models; learning user types

* Implications to Trust & Deception
* Mental modeling for obfuscation [AAAI 2019]
e Lying with mental models [AIES 2019]

* Engendering trust to improve performance
[HRI 2023]
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Talk Overview

Explain | Human-, |
Human |7 Plannin | A Pl
A Plann

Blue Sky Talk
AAAI 2022

* Part 3: Supporting explainable behavior even
without shared vocabulary

Subbarao Kambhampati

¢ Sym bO I S a S a Lingua Franca fo r EXp I a i n a b I e a n d — ;_Qoint with Sarath Sreedﬁgran, Mudit Verma, Yantian Zha & Lin Guan)

0 ujti'rlug

Advisable Human-Al Interaction
* Post hoc symbolic explanations of inscrutable reasoning
* Accommodating symbolic advice into inscrutable systems




Addressing Vocabulary Mismatch Explanatory

Messages
* We assumed a shared e
vocabulary as a starting

point ﬁ

MR
Agent may be using a - <>
learned model or an (("
inscrutable simulator

79



Explanations in the absence of shared
vocabulary

e What about exlplanations in the absence of
a

shared vocabulary? |
 E.g. Al agents working off of their own internal Figure & Explaining o Oy chomtiduwlt  OEpnsin L S L
. ) lighting positive pixels. * Figure 11: Raw data and explanation of a bad ‘“Acoustic guitar”
I earn ed re p rese ntat IONS ¢ (p = 0.24) and “Labrad,  Model’s prediction in the “Husky vs Wolf” task.

* The lowest common denominator between
humans and the Al agents in such cases will
be just raw signals and data

e Explanations in terms of them will involve
exchanging (or “pointing to”) “Space Time Signal
Tubes” %STSTS)

* Interestingly, this is what a majority of XAl
literature does!

e “XAl” is hot.. But mostly as a debugging tool Please
for “inscrutable” representations point to
* “Pointing” explanations (primitive) the
* Explaining decisions will involve pointing over “ostrich”

space-time signal tubes!

parts




"Pointing Explanations” are har

* Pointing explanations with STSTs are not
only unwieldy (in terms of communication
costs), but also hard to comprehend in
many cases

Humans (1) develop a shared symbolic

vocabulary and (2) exchange symbolic

explanations where possible, and (3) come

down to pointing explanations only when

the vocabulary is inadequate (and use this

as a sign to expand vocabulary)

* This approach works particularly well for explicit

knowledge tasks (but we also use it for mixed

and tacit-knowledge tasks—think of “pick and
roll” in basketball)

We advocate a symbolic interface layer
instead..

d to comprehend!

Symbols as a Lingua Franca for Bridging Human-AI Chasm
for Explainable and Advisable AI Systems

Quhh hh
D

rao K

pati, Sarath Sreedharan, Mudit Verma, Yantian Zha, Lin Guan

School of Computing & Al Arizona State University

[AAAI 2022 Blue Sky Paper]

Despite the surprising power of many modern Al systems
that often learn their own representations, there is signifi-
cant discontent about their inscrutability and the attendant
problems in their ability to interact with humans. While al-
ternatives such as neuro-symbolic approaches have been pro-
posed, there is a lack of consensus on what they are about.
There are often two independent motivations (i) symbols as
a lingua franca for human-Al interaction and (ii) symbols
as (system-produced) abstractions use in its internal reason-
ing. The jury is still out on whether AI systems will need
to use symbols in their internal reasoning to achieve gen-
eral intelligence capabilities. Whatever the answer there is,
the need for (human-understandable) symbols in human-AI
interaction seems quite compelling. Symbols, like emotions,
may well not be sine qua non for intelligence per se, but they
will be crucial for AI systems to interact with us humans—
as we can neither turn off our emotions nor get by without
our symbols. In particular, in many human-designed domains,
humans would be interested in providing explicit (symbolic)

o ‘ore referred to as
STST).

‘While STSTs—in particular saliency regions over images—
have been used in the machine learning community as a
means to either advice or interpret the operation of Al sys-
tems (Greydanus et al. 2018; Zhang et al. 2020), we con-
tend that they will not scale to human-Al interaction in more
complex sequential decision settings involving both tacit and
explicit task knowledge (Kambhampati 2021). This is be-
cause exchanging information via STSTs presents high cog-
nitive load for humans—which is what perhaps lead humans
to evolve a symbolic language in the first place.!

In this paper, we argue that orthogonal to the issue of
whether Al systems use internal symbolic representations,
Al systems need to develop local symbolic representations
that are interpretable to humans in the loop, and use them
to take advice and/or give explanations for their decisions.
The underlying motivations here are that human-AlI interac-
tion should be structured for the benefit of the humans—thus

Human-Interpretable
Vocbulary
Al ERNDSN Human
Explanation Advice
Symbolic Interface
_(_»_ ,L
Explanation Advice
Generation Incorporation
%k—/ ~———o
Al Decision
Making Al Model
Component
| —

Al Agent



Al systems must be Explainable and Advisable

* As we are increasingly surrounded by Al systems, it is critical that they
are explainable and advisable

* The explainability and advisability must be on our (human) terms

* We shouldn’t have to debug Al systems to interpret them

* It would be a pity if all the progress in Al results in us humans going into the
(incomprehensible) land of the Al systems

e We want them to communicate with us in our terms

* We argue that Al systems need to support a symbolic lingua franca
with the humans in the loop



Neuro-Symbolic Al: Two orthogonal motivations

Internal Symbolic reasoning

* Argument that Al systems would need
to employ internal symbolic reasoning
for efficiency & scalability

* The jury is still very much out on this

* (There is little reason to expect that
symbols used as abstractions in
internal reasoning will align well with
those that humans use)

Symbolic communication interface

* Argument that (regardless of their
internal reasoning modality), Al
systems must support a symbolic
communication channel with humans
(using symbols that make sense to
humans)

* The alterative—of exchanging Space Time
Signal Tubes (STSTs)—presents intolerably
high cognitive load for humans!

* This Symbolic Lingua-Franca for
explainability and advisability is the main
argument of our paper

* This may well be in addition to other
modalities of communication



Use case for the Symbolic Layer

* We will be using the shared vocabulary to
build an approximate symbolic Human-Interpretable
. . Vocabulary
representation of agent model that is Human
surfaced to the user

* The symbolic model aims to capture the | symbolic Interface

human’s understanding of the robot model --
My,
* It can thus be used as the basis for any human-
robot interaction that depends on My

* In particular, we can use this symbolic
interface for
* Generating Explanations

e Accept advice from the user
Al Agent



Generating Explanation

* We can use the symbolic model as the basis for
explaining any decisions made by the system

* We can directly leverage this model in the context
of the model-reconciliation framework developed
for symbolic models.

* The symbolic model, being an approximation of the
underlying system model, may be insufficient to
explain all the system decisions — as such
explanation may require expanding the symbolic
model to provide sufficient explanation

* A special case of model-reconciliation where there is an
additional translation process

Human

Symbolic Interface

Explanation
Generation

T

Al Decision
Making
Component

( Al Model

)

Al Agent

N

|




Explaining In terms of User Specified Concepts

User specifies concepts

[ Game state ]
visualization

-- Each concept maps to a binary classifier

Concepts:
Left door closed
Not on ladder

Concept
— Classifiers

User raises a foil —i.e., an alternate plan — A . 4
model component learned to refute the foil User = e 2ae TN e Mg
o Explanation:
Move_left will fail as precondition Symbolic
skull not on left is not true in approximation
current state of the model
The foil fails at any Identify the missing User Foil2:<a,, .. attack, ... a>
. .- | e
pOInt precondltlons Explanation: \ J
AI:tc;lck c7sftts at least 500 in presence of Interaction
skull on le
Tr"is is true in step i Simulator operating on an
The foil is costlier Identify an abstract version of the The total cost of foil s greater than cost it i
L. . of the plan (which is 20)
than the original cost function
plan

[ICLR, 2022]



Learning Model Components Through Sampling

/

/ Foil provided by the user is
simulated to identify failure
points and potential
hypotheses for model
component that can explain

\\'Ehe failure

o

~

Hypotheses set
over model
components

Explanation in terms
of concepts

Requests for more
concepts

~

Concept classifiers | __

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\4

LSymboIic experience traces

Experiences sampled from the system
simulator used to refine the
hypotheses set, until either the
explanation is found or the system
identifies that the vocabulary items are
insufficient to explain the failure

Similar method can be used for
learning cost function

Blackbox

Simulator/
Model




Generating Confidence-level For the Explanation

e Generate confidence to account for
* Sampling based generation method

* Noisiness of classifiers used to
generate explanations

* Avoid creating explanations that Graphical model for Calculating
. . Posterior Probability of a
build undeserved trust in the concept being a precondition
system

Graphical model for Calculating

Posterior Probability of a

concept being part of the cost 92
function



Empirical Evaluation

Table 1: Results from the user study

Prefers Average P-value Method # of Average Average
symbols Likert- Participant Time Taken # of Steps
score (sec)
Precondition 19/20 347 1.0 x 10°% Concept-Based 23 43.78 £ 12.59 35.87 £ 9.69
Cost 16/20 3.21 0.03 Saliency Map 25 13424 +61.72 | 52.64 £ 11.11
(a) H1 (b) H2
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Figure 5: The average probability as-
signed to the correct model compo-
nent by the search algorithms, calcu-
lated over ten random search episodes
with std-deviation.



Accepting Advice

* The human user can directly update the model to drive
system behavior

* The modifications made or constraints applied in the
symbolic model are translated into a form that can be
used by the low-level agent

* The advise can either be given during the learning time
(where the RL agent specifically requests for criticism)
[NeurlPS 2021 Spotlight]
* Or before the RL phase starts—via a possibly incomplete
symbolic model
[ICML 2022]

* Additionally, we can use the symbolic model as a basis
to interpret even non-symbolic advice (e.g.
demonstrations) provided by the user

* For example, one could use the symbols and the model

definition to better interpret input like human
demonstration.

Human

Symbolic Interface

Advice
Incorporation
[ Al Model ]

Al Agent




Human-Advisable RL

e A human trainer monitors the learning process of RL
« The agent adjusts its policy according to human advice

e Forms of advice
Inexpensive and intuitive to specify.
Reduced to TAMER [Knox and Stone, 2009] when advice is binary evaluative feedback

« Human-Advisable RL generalizes from Human-in-the-Loop RL (HIRL) but has separate challenges
beyond HIRL

query trajectory action

l | | 1
& f@ . (ensronmn]
\

User Interface Agent

T T

human guidance/advice state, (reward)

[NeurlPS 2021 Spotlight]



Challenges in Human-Advisable RL

e« The Quandary:
Human feedbacks are expensive and sparse
DNNs are always data-hungry

[ ) ) [an)
« Missing Lingua Franca (shared vocabulary) between humans H H n H
and agents
Limit the forms of feedback to simple numerical labels (e.g.

evaluative feedback, binary preference labels) o3
Numerical labels are not informative enough -

« Communicative Modalities ﬂ

Humans prefer multi-modal communications

Easy (effortless) to provide

The agent can easily understand .

Binary feedback doesn’t indicate why
certain action is good/bad.




Our Goals

e« The Quandary:
Improve human feedback sample efficiency & environment sample efficiency

e Lingua Franca & Multi-Modal Communication
Augment binary evaluative feedback with human visual explanation
Annotations of task-relevant regions (pixels) in image
Help in “maximally” utilizing each binary feedback
Effortlessly collect human visual feedback
An object-oriented middle layer (interface)

ﬂ ( ) binary feedback
@ —_—

) >

salient pixels

Q

relevant
object labels

- - ) -

object-oriented NifMln X
interface

DRL agent




Efficiently Collecting Visual Explanation

An object-oriented interface:

Observations:
«  Human visual explanations are usually associated with certain

objects or regions in image
«  Salient regions/objects are usually the same in nearby frames

Use a simple tracking and detection module to detect possible salient
objects/regions

Effortless communication at the level of symbols (e.g. object labels) even
though the DRL agent is operating in pixel-space

User study: collected over 2k feedbacks (binary feedback & visual
explanation) in 30 min

el

Fig. 3. All the lanes and cars are
automatically highlighted and
tracked, so the human trainers only
need to deselect irrelevant objects in

the image.



Context-Aware Data Augmentation

Existing ways to incorporate saliency information into supervised learning systems are not suitable for
less stable learning systems like deep reinforcement learning

« Context-Aware Data Augmentation
Intuition: small perturbations on irrelevant regions should not alter the agent’s policy
Approach:
Apply various image transformations to the irrelevant regions, and obtain a set of
augmented feedback
Gaussian blurring with different Gaussian kernels
Two loss terms to enforce invariance

Examples:
) Q e Q
wtlxlaln] — [ [w[x]aln wlxlaly 151




# of env samples
20k 40k 60k 80k

100k

Enduro-1000

15

10

Enduro-1000 (Human Trainer)
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Reward Learning from
Trajectory Comparisons

-
—
]

-

Learn to give higher rewards to
trajectories preferred by the human:

Z ro(Se, ap) < Z oS¢, at)

St,at €00 S¢,at €01

It assumes the objective can'’t
be expressed in terms of
nameable concepts.

Most suitable for tacit-
knowledge tasks like learning
locomotions

But need hundreds of
preference labels!

~

/ Tweaking Agent Behavior through \
Relative Behavioral Attributes

. Allow users to specify the behavior through
explicit symbolic concepts.

. Uses a parametric method to learn the tacit
parts (e.g., how to walk naturally)

©
©

. Not good enough
. Move more
softly/sneakily!

Updated behavior

Only need a small number of attribute feedback!

-

Q natural way for human-agent communication /

Symbolic Goal Specification

Example symbolic
reward function:

1 if Green is on Blue
r(s,a) = ]
0 otherwise
Very straightforward

and intuitive to use

But limited to explicit-
knowledge tasks (e.g.,
it's unclear how to define
the ways of walking
“charmingly” or “sneakily”)

~




Relative Behavioral Attributes: An Example Method

« Given a large-scale offline behavior | “walk softly”) < f,( | “walk softly”)
datasets (e.g., Waymo driving dataset
or human motion dataset), learn an
attribute-conditioned ranking
function (labels given by agent | “stepsize”) < T ( | “step size”)

builder)

fa(= | “steering sharpness”) < f(,(= | “steering sharpness”)
L 1 ]

e Learn an attribute parameterized reward function (i.e., essentially a family of
rewards that correspond to behaviors with diverse attribute strengths)

Current state s

Update the target attribute re(slvy) —— rewards

strengths according to Target attribute strengths
user feedback vi={“softness”: 0.5, “step size”: 0.36}

[ICLR 2023]



Attribute strength Attribute strength Attribute strength Attribute strength
Step size: 0.67 Step size: 0.70 Step size: 0.86 Step size: 0.79
Softness: 0.51 Softness: 0.26 Softness: 0.16 Softness: 0.22



Results

Manipulator Lane Change Snake Concertina

higher instability higher instability
smaller steering
sharpness
higher bend higher bend
width width

—_—

Method Lane-Change Manipulator Snake Walker

SR AF (std) SR AF (std) SR AF (std) SR AF (std)
RA-Global 0.95395(2.43) 1.0 2.8(1.21) 0.854.17 (1.85) 1.0 3.75 (1.47)
RA-Global-L 1.0 3.052.06) 1.0 2.5 (1.32) 0.8 6.38(5.03) 0.953.78 (2.25)
PbRL 1.0 162.3(184) 0.6 159.5(188.87) 0.05 N/A 1.0 84.6(79.87)

SR - Success Rate; AF - Average Feedback (when success); RA - Relative Attribute; L - Language



Results

Manipulator Lane Change Snake Concertina

higher instability higher instability

smaller steering
sharpness ‘

higher bend higher bend
width

—_—

With relative behavioral attributes, users can specify agent
behavior extremely efficiently!!

Method Lane-Change Manipulator Snake Wwalker

SR AF (std) SR AF (std) SR AF (std) SR AF (std)
RA-Global 0.95395(2.43) 1.0 2.8(1.21) 0.854.17 (1.85) 1.0 3.75 (1.47)
RA-Global-L 1.0 3.052.06) 1.0 2.5 (1.32) 0.8 6.38(5.03) 0.95 3.78 (2.25)
PbRL 1.0 162.3(184) 0.6 159.5(188.87) 0.05 N/A 1.0 84.6(79.87)

SR - Success Rate; AF - Average Feedback (when success); RA - Relative Attribute; L - Language



e SERLfD system leverages the symbolic
interface to better interpret
ambiguous human demonstrations

e System assumes that the (continuous)
demonstration provided by the human
is guided by their own interest in
highlighting specific symbolic goals
and way points.

* |t learns to interpret the relative

importance of these symbols and use
that to disambiguate the demonstrations
* (Can be viewed as an exercise by the Al

system to parse/explain the demonstration
in terms of the shared symbols)

nterpreting Ambiguous Human
Demonstrations in terms of shared symbols

Al Model &
Decision-Making
Component

r

iLfaiIur

L

]
¢
W human-relate
background B
knowledge

Symbolic Interface Advice Incorporation

[AAAI 2022 Wkshp on RL in Games]



Open Research Challenges in Supporting
Symbolic Interfaces

* Collecting initial concept set
e Grounding concept set
* Vocabulary expansion

] Subbarao Kambhampati
(Joint with Sarath Sreedharan, Mudit Verma, Yantian Zha & Lin Guan




Challenge 1: Collecting Initial Concept Set

(
* Collect a set of propositional/relational
concepts that will be used to build the Concept
symbolic interface List
e Captures a set of concepts that the
human associates with the task - J

e Each slice of STST meant to map to
a set of these concepts

* For common tasks, one could leverage
systems like scene graph analysis

* The cost of concept acquisition
amortized across multiple tasks

* Concepts could also be potentially
mined from domain-specific

databases/documents System
Model



Challenge 2: Grounding Concept Set

* Next the concept set is grounded to learn
the mapping between STST and individual
concept as understood by the user

* For specialized domains, this could mean the
same concept may be grounded by different
users in different ways

* One possible way to learn such grounded
representations maybe to learn classifiers
that identify whether a concept is present in
an STST slice

» User expected to provide positive and negative
examples

* All learned groundings expected to be
approximate and noisy

* Any symbolic models learned should be capable
of handling this level of noise

4 )
C.oncept ——» Grounded
List Concept
g J T
Symbolic
Model

System

Model



Challenge 3: Vocabulary Expansion

* |nitial concept set bound to be
incomplete with respect to its ability to
represent the underlying model

 First challenge includes identifying
vocabulary incompleteness
* Requires the methods leveraging the

symbolic models to be aware of the fact
that the symbolic model may be
incomplete and thus identify when the
reasoning from the symbolic model may
differ from the one obtained through the
true model

* We have to engage in a process of
vocabulary reconciliation to acquire
missing yet necessary concepts for the
task at hand

(

\

Concept
List

5 Grounded

Concept

Symbolic
Model

System

Model



Challenge 3: Vocabulary Expansion (contd.)

* Two sources of incompleteness
* User forgot to specify the concept

* User’s vocabulary does not include an
equivalent concept

* The former requires the development
of new techniques to that are able to
efficiently query the human for
previously unmentioned concepts

* One could potentially use low-level

explanations to guide the concepts the
users may provide

* The latter requires the system to teach
new concepts to humans
* Early works in identifying concepts used by

super-human Al systems like alphago
presents interesting use-cases.

4 )

Concept
List

5 Grounded

Concept

Symbolic
Model

System
Model



Summary

* Part 1: Why and how do humans exchange
explanations? Do Al systems need to?

* Part 2: Using Mental Models for Explainable

Behavior in the context of explicit knowledge e T S N e
. . 17 annin, lanning Perspective
tasks (think Task Planning) o e A
R H R Subbarao Kamb .,,H, sAmKnlhm _ m&,&kﬁﬂ 2
* The 3-model framework: M™, M, My

» Explicability: Conform to M’,f
« Explanation: Reconcile M % to MR
* Extensions: Foils, Abstractions, Multiple Humans..

* Part 3: Supporting explainable behavior even
without shared vocabulary

» Symbols as a Lingua Franca for Explainable and B
. . v s - g | of Computing & Al '
Advisable Human-Al Interaction N ) oo

* Post hoc symbolic explanations of inscrutable reasoning
* Accommodating symbolic advice into inscrutable systems




