

Learning Algorithms for Optimal Network Control

Eytan Modiano MIT, LIDS

Eytan Modiano Slide 1

- Learning network state and dynamics
	- Channels, connectivity, delays, etc.
	- Multi-arm bandit framework
		- "multi-arm bandits with queues"
- Network control in uncooperative environments
	- Some of the nodes are uncontrollable and/or unobservable
	- Network optimization subject to stochastic queueing dynamics
- Performance optimization (i.e., delay)
	- Use ML/RL to solve stochastic optimization problem with large state space
	- Optimal routing, scheduling, etc.
- Control in adversarial environments
	- Nodes intentionally take adversarial actions "online learning framework"
	- Networks under attack (DoS, traffic injection)

- Tracking Max-Weight (TMW): Learning-aided Max-Weight algorithm
	- Need to learn unknown underlay dynamics
	- Focus on network stability
- Gradient sampling Max-Weight: Learning-based network utility maximization
	- Need to learn unknown utility functions
	- Feedback/actions subject to queueing delay
	- Application to delay minimization
- Reinforcement learning algorithm for queueing networks
	- General optimal control framework for queueing systems

CHU

Network Model

- Multi-hop wireless network: Only a subset of the links can be activated simultaneously, due to interference
	- Need to make packet routing and link scheduling decisions

- Random arrivals with arrival rates λ*^c*
	- The λ_c 's are not known in advance
- Time-slotted system

Eytan Modiano Slide 4

LIDS

- Goal: Design a routing and scheduling policy that can support all arrival rates within the network stability region
- Stability Region (Λ^*) the set of all admissible arrival rate vectors
	- There exists some policy that will "stabilize" the network with these arrivals
- Notions of stability
	- Bounded queue occupancy
	- Existence of steady state distribution
	- Rate stability: arrival rate $=$ departure rate
- Tassiulas/Ephremides '92

 λ_1

LIDS

The Max-Weight Scheduling Algorithm (Tassiulas/Ephremides '**92)**

- Only a subset of the links can be activated simultaneously. E.g.,
	- Primary interference constraints A node transmits to a single neighbor at a time Multiple transmissions can take place as long as they do not share a common node (e.g., Bluetooth)
	- Secondary (2-Hop) interference constraints No two edges can be active if they can be joined by one or fewer edges (e.g., 802.11)
- Throughput optimal scheduling
	- Schedule the max-weight activation set in each time-slot
	- Weights are the queue backlogs

$$
\pi^* = \mathop{\arg\max}_{\pi \in \Pi} \sum_{(i,j)} Q_{ij}(t) \pi_{ij}
$$

Weight 12

The Backpressure Routing Algorithm (Tassiulas/Ephremides '**92)**

- Route based on commodities: each commodity $C \in \{1,..,N\}$ corresponds to data associated with a given destination node
- Along each link (a,b) route commodity C that maximizes the differential backlog along that link. i.e.,

$$
W_{(a,b)}^* = \max_{c \in \{1..N\}} W_{(a,b)}^c = (U_a^c - U_b^c) \qquad \frac{C}{\prod_{i=1}^N (a_i)^{c_i}} \longrightarrow \frac{C}{\prod_{w_{(a,b)}^c = 3-2}^{N_c} (b_i)^{c_i}}
$$

– Algorithms uses "back pressure" to find the routes

Link activation: max-weight rule with differential backlogs as weights

- Joint routing and scheduling
$$
\pi^* = \arg \max_{\pi \in \Pi} \sum_{\text{links}(a,b)} W_{(a,b)}^*(t) \pi_{(a,b)}
$$

- Backpressure "learns" the "optimal" routes and schedules using queue backlog as feedback
	- Requires all nodes to cooperate: Share queue information
		- Implement the same policy

Eytan Modiano Slide 7

- Increasingly networks are only partially controllable
- A subset of nodes are not managed by the network operator and could use some unknown network control policy
- Existing optimal control policies may yield poor performance
- **Overlay-underlay network:** MaxWeight algorithm may lead to throughput loss

IDS

- Overlay architecture is extremely common
	- Operate over a black-box whose internal dynamics are not known and may not even be observable
	- e.g., over the top service providers, coalition networks
- Network control based on end-to-end feedback
	- Need to learn the dynamics of the underlay network
- Approach: a combination of reinforcement learning and Lyapunov optimization to develop control algorithms based on end-to-end feedback
	- Stability: keep queues bounded
	- Utility maximization

Learning-based network control (talk outline)

Tracking Max-Weight (TMW): Learning-aided Max-Weight algorithm

- Need to learn unknown underlay dynamics
- Focus on [network stability](http://www.mit.edu/~modiano/papers/CV_C_221.pdf)

Gradient sampling Max-Weight: Learning-based network utility max

- Need to learn unknown utility functions
- Feedback/actions subject to queueing delay
- Application to delay minimization
- Reinforcement learning algorithm for queueing networks
	- General optimal control framework for queueing systems

Q. Liang, E. Modiano, "Optimal Network Control in Partially-Controllable Networks," Info B. Liu, Q. Liang, E. Modiano, "Tracking MaxWeight: Optimal Control for Partially Observ Controllable Networks," IEEE/ACM Transactions on Networking," 2023.

- Consider a queueing network with N nodes and K flows
- $Q_{ik}(t)$ is the queue length of flow k at node *i* in slot t
- In each time slot t, we observe a network event ω_t which includes information about link capacities, external packet arrivals, etc.
	- $\{\omega_t\}_{t\geq 0}$ follow a stationary stochastic process
- Each node *i* needs to make a routing decision $f_{ijk}(t)$ indicating the offered transmission rate for flow k over link $i \rightarrow j$
	- $\tilde{f}_{ijk}(t)$ = actual transmitted packets, may be smaller than $f_{ijk}(t)$

- The set of all nodes is denoted by $\mathcal N$
	- Network routing vector is $f(t) = \{f_{ijk}(t)\}_{i \in \mathcal{N}}$
- The set of **controllable** nodes is denoted by C
	- Controllable action $f^c(t) = \{f_{ijk}(t)\}_{i \in c}$
	- Controllable policy π_c : $(\omega, \mathbf{Q}) \mapsto \mathbf{f}^c$
- The set of **uncontrollable** nodes is denoted by \mathcal{U}
	- Uncontrollable action $f^{u}(t) = \{f_{ijk}(t)\}_{i \in \mathcal{U}}$
	- Uncontrollable policy π_u : $(\omega, \mathbf{Q}) \mapsto f^u$

Objective: design controllable policy π_c such that the entire network is rate stable:

$$
\lim_{t \to \infty} \frac{\mathbb{E}[Q_{ik}(t)]}{t} = 0, \quad \forall i \in \mathcal{N}, k.
$$

Eytan Modiano Slide 12

Queue-agnostic uncontrollable policy (ω -only policy):

 $\pi_u : \omega \mapsto f^u$

- Uncontrollable node simply observe the current network event ω_t and makes a routing decision
	- "stateless"
- Simple yet cover a wide range of practical protocols:
	- Shortest-path routing (OSPF, RIP)
	- Multi-path routing (ECMP)
	- Randomized routing

Failure of Backpressure (BP) Algorithm

- Each node can only transmit to one of its neighbors in each slot.
- Only one flow: $1 \rightarrow 4$ (with rate 20)
- Uncontrollable node 2 transmits to node 3 at full line rate.
- Uncontrollable node 3 holds any packets it received.
- Backlogs are always zero at node 2, so BP always sends packets to node 2 although they cannot be delivered.

Why Backpressure (BP) Algorithm fails?

- Node 3 uses a non-work-conserving policy such that flow conservation law is not preserved at node 3.
- However, BP is not aware of the behavior of node 3 since node 2 hides this fact from node 1.
- **Lesson learned :** A good network control algorithm must be aware of the uncontrollable policy and react accordingly.

- TMW enhances the original Max-Weight algorithm with an implicit learning of the policy used by uncontrollable nodes
- TMW produces control actions for controllable nodes and **generates an "emulated" action for uncontrollable nodes**
- TMW aims to
	- Stabilizing a virtual system with "emulated" uncontrollable actions
	- Minimizing the gap between the "emulated" and the true uncontrollable action

- Let $f^{u}(t)$ be the true action taken by uncontrollable nodes in slot t
- Let $g(t) = (g^c(t), g^u(t))$ be the routing decisions generated by TMW
	- $\mathbf{g}^c(t)$ is the action for controllable nodes
	- $\mathbf{g}^{u}(t)$ is the "emulated" action for uncontrollable nodes
- Gap between $f^u(t)$ and $g^u(t)$:

$$
\Delta_{ijk}(t) = g_{ijk}(t) - \tilde{f}_{ijk}(t), \qquad \forall i \in \mathcal{U}
$$

where $\tilde{f}_{ijk}(t)$ is the actual number of transmitted packets under offered rate $f_{ijk}(t)$

TMW maintains two types of virtual queues

Virtual queue $X(t)$ is the backlog in the "emulated" system:

$$
X_{ik}(t+1)\,=\,\left[X_{ik}(t)+a_{ik}(t)+\sum_{j\in\mathcal{N}}g_{jik}(t)-\sum_{j\in\mathcal{N}}g_{ijk}(t)\right]^+
$$

Virtual queue $Y(t)$ characterizes the cumulative difference between the "emulated" action and the true action:

$$
Y_{ijk}(t+1) = Y_{ijk}(t) + \Delta_{ijk}(t),
$$

where $\Delta_{ijk}(t) = g_{ijk}(t) - \tilde{f}_{ijk}(t)$, $\forall i \in \mathcal{U}$

• TMW requires ability to observe underlay $(\tilde{f}_{ijk}(t))$

– Sparse and noisy observations

Eytan Modiano Slide 18

TMW Algorithm

LIDS

$$
\max_{g(t)\in\mathcal{F}_{\omega_t}}\sum_{(i,j)}\sum_k g_{ijk}(t)W_{ijk}(t),
$$

where

$$
W_{ijk}(t) = X_{ik}(t) - X_{jk}(t) - Y_{ijk}(t).
$$

- 2. Apply $g(t)$ to controllable nodes
- 3. Update virtual queues $X(t)$ and $Y(t)$

- TMW uses BP routing on the virtual queues, offset by Y
- The offset Y drives the emulated actions g^u toward the actual actions f^u , i.e., drives $\Delta \rightarrow 0$

- Uncontrollable node 2 transmits to node 3 at full line rate
- Uncontrollable node 3 holds any packets it received
- Backlog is always zero at node 2, so BP always sends packets to node 2 although they cannot be delivered

- With TMW Y_{34} will continue to grow because node 3 does not send
- Create "backpressure" away from node 3 in "emulated" system

$$
W_{ijk}(t) = X_{ik}(t) - X_{jk}(t) - Y_{ijk}(t).
$$

Eytan Modiano Slide 20 • Eventually node 1 will stop sending to node 2 and g_{34}^u will go to 0

Theorem

If uncontrollable nodes use an ω -only policy, and their state can be observed, then the TMW algorithm can stabilize the physical queue $\boldsymbol{Q}(t)$ whenever possible

Proof

- Show that TMW can stabilize the two virtual queues $X(t)$ and $Y(t)$
- Show that if the two virtual queues $X(t)$ and $Y(t)$ can be stabilized, then the physical queue $\boldsymbol{Q}(t)$ can also be stabilized

- **Delayed/Sparse Observations:**
	- Denote by $\tau_i(t)$ the most recent time we have an observation of node i
	- Denote by $L_i(t) = t \tau_i(t)$, the delay at t

Theorem: When $\sum_{t=0}^{T-1} L_i(t)/T = o(T)$ for every $i \in \mathcal{U}$, then the TMW algorithm can stabilize the physical queues $\boldsymbol{Q}(t)$ whenever possible

As long as the average observation delay is sublinear in T , TMW is throughput-optimal for partially observable and controllable setting

- **Noisy observations**
	- Denote by $\epsilon_{ijk}(t)$ the estimation error in $W_{ijk}(t)$
	- Estimation error in observation of underlay queues

Theorem: When $|\epsilon_{ijk}(t)| = o(t)$ for every $i \in \mathcal{U}$ and k, then TMW can stabilize the physical queues $\boldsymbol{Q}(t)$ whenever possible

If the estimation error grows sublinearly in t , TMW is throughputoptimal

Includes case of constant noise $(O(1))$

Model

- All links have the capacity of 5
- Node 8, 9 and 13 are uncontrollable and unobservable
	- Uniformly route $0 \sim 5$ packets on each outgoing link

Stability performance (sparse observation)

- Suppose the observations are sparse (nodes in $\mathcal U$ can only be observed every L time units).
- Max-Weight (i.e., BackPressure) fails to stabilize the system.

_IDS

Tracking of underlay queue backlogs (sparse observation with $L = 10$)

TMW quickly controls the gap between X_{ik} and Q_{ik} .

Stability performance with noisy observations

Eytan Modiano Slide 27

Learning-based network control (talk outline)

- Tracking Max-Weight (TMW): Learning-aided Max-Weight algorithm
	- Need to learn unknown underlay dynamics
	- [Focus on network stability](http://www.mit.edu/~modiano/papers/CV_J_128.pdf)

Gradient sampling Max-Weight: Learning-based network utility maximization of the Case of Australian Constant I

- Unknown utility functions
- Application to minimum delay routing
- Reinforcement learning algorithm for queueing networks
	- General optimal control for queueing systems

[3] Xinzhe Fu, E. Modiano, "Learning-NUM: Network Utility Maximization with Utility Functions and Queueing Delay," IEEE/ACM Transactions on Networking [4] Xinzhe Fu, E. Modiano, "A Learning Approach to Minimum Delay Routing in Queueing Networks," Infocom 2023.

- NUM objective: maximize sum utilities subject to capacity constraints
	- $g_i(r)$ the "utility" of allocating rate r to class i traffic
- Previous works consider known utility functions
	- E.g., proportional fairness: $g(r) = log(r)$
- The utility functions may be unknown in advance
	- User satisfaction (e.g., video quality)
	- Average delay
- Key challenges/novelty:
	- Unknown utility functions: Power consumption of links, delay, user satisfaction
	- Feedback delay: Function values are observed after decisions are made

 $maximize: \sum_{i} g_i(r_i)$

Subject to: $\underline{\mathbf{r}} \in \Lambda$, $\underline{\mathbf{r}} \leq \underline{\lambda}$

Goal: Minimizing regret over time-horizon T

- The Gradient Sampling Max-Weight Algorithm
	- Choose user rates: r_i 's
	- Use feedback to construct approximate gradients

gradient = $\frac{[g_i(r_i+\delta)-g_i(r_i-\delta)]}{2\delta}$

- Use Max-Weight to determine the network routing and scheduling decisions: Ensure network stability: constraint $r \in \Lambda$
- Update the rate variables based on approximate gradients and queue lengths

$$
r_i(t+1) := r_i(t) + \frac{1}{\alpha} \cdot (gradient - V \cdot queue \ length)
$$

- Primal-Dual Interpretation:
	- Primal variables: rates r_i 's
	- Dual variables: queue lengths Q_n 's, corresponding to constraint $r \in \Lambda$
	- Update primal and dual variables based on gradient of the Lagrangian

Primal: gradient – V^* queue lengths Dual: queue length dynamic

Eytan Modiano Slide 30

Dealing with feedback delay

- The Parallel-Instance GSMW
	- If feedback delay is Z slots, initiate Z instances of GSMW
	- Since delay is unknown and time-varying, can generate "new" instances dynamically while waiting for feedback

- Regret: $R(T)$
	- The cumulative difference between the utility achieved by the algorithm and the optimal over a time horizon of T time slot
- When the feedback is noiseless: GSMW achieves $R(T) = O(\sqrt{T})$
- When the feedback is noisy: GSMW achieves R = $O(max{\sqrt{T}, T^{(2+2\beta)/3}})$
	- β = noise parameter

Each observation is corrupted by an i.i.d. zero-mean random noise with standard deviation bounded by T^{β} ($\beta \le 0$)

- Regret increases from $O(\sqrt{T})$ to $O(T)$ & \overline{s}) as noise increases

- Sublinear regret corresponds to "optimality" as the regret per unit time goes to zero
- Noise can represent imprecise measurement or feedback errors

Simulation Results

- Parallel server network
- Utility is function of server and data rate
	- Mix of logarithmic, polynomial and linear functions
- GSMW stabilizes the network and achieves sublinear regret
	- Sublinear regret $=$ asymptotic optimality

Queue-length Regret

• I.I.d noise Uniform [-noise, noise]

GSMW: Minimum Delay Routing

IDS

- Minimum Delay Routing [1]
	- K paths $\{P_1, ..., P_K\}$ from source s to destination d
	- Route incoming traffic of rate λ along the paths
	- Capacity region Λ
	- Compute the optimal rates $r = (r_1, ..., r_K)$
	- Flow on link e associated with rate vector r: $f_e^r = \sum_{k: e \in P_k} r_k$
- Assumptions:
	- $D_e(f_e)$ is the delay of link *e* when the rate is f_e
	- D_e is convex, non-decreasing and known

Minimize
$$
\sum_{e \in E} D(f_e^r)
$$

\n**s.** t. $\sum_{k=1}^{K} r_k = \lambda$,
\n $r \in \Lambda$,
\n $r_k \ge 0, \forall k$.

[1] R. Gallager, "A minimum delay routing algorithm using distributed computation." 1977.

Minimum Delay Routing in Stochastic Queueing Networks

- Parallel M/M/1 Queues
	- $-\rho_i = r_i / \mu$
	- $\mathbb{E}_{\pi_r}[Q_i(t)] = \rho_i/(1 \rho_i)$
	- Optimal: $r_1 = r_2 = r_3 = \frac{\lambda}{3}$.

- M/M/1 queues and deterministic queue
	- Route more traffic to the deterministic queue.

The delay function depends on link characteristics that are unknown apriori.

- Network Model
	- Arrival rate $a(t)$, i.i.d., with $\mathbb{E}[a(t)] = \lambda$
	- Route the incoming packets along K paths $\{P_1, ..., P_k\}$
	- Static routing policy parameterized by routing vector $r = (r_1, ..., r_K)$
	- Queue length of link *e* at time *t*: $Q_e(t)$
	- Steady-state queue length distribution under rate $r: \pi_r$
	- By Little's law, λ^* (steady-state delay) = $\sum_{e \in E} \mathbb{E}_{\pi_r}[Q_e] \coloneqq D(r)$
- Problem Formulation
	- Find r that minimizes $D(r)$
	- $D(r)$ is unknown, but queue lengths are observable
	- *Learn* the delay function and the optimal static routing policy

```
Minimize D(r) = \sum_{e \in E} \mathbb{E}_{\pi_r}[Q_e]s. t. \sum_{k=1}^{K} r_k = \lambda ,
                 r \in \Lambda.
             r_k \geq 0, \forall k.
```


- Assumptions: $D(r)$ is a convex function of r
	- Proved for single queues [1]
	- We show the convexity for tandem queues via stochastic coupling
	- It follows that convexity holds for networks with disjoint paths
- Static Routing vs. Dynamic Routing
	- We study the optimal static routing policy that makes decisions independent of queue lengths
	- Dynamic policies can outperform the optimal static policy, but few results are known
	- In simulations, the optimal static policy outperforms common dynamic policies

Minimize
$$
D(r) := \sum_{e \in E} \mathbb{E}_{\pi_r}[Q_e]
$$

s. t. $\sum_{k=1}^{K} r_k = \lambda$,
 $r \in \Lambda$,
 $r_k \geq 0, \forall k$.

Eytan Modiano [1] M. Neely and E. Modiano, "Convexity in queues with general inputs." 2005.

IDS

- Projected Gradient Descent:
	- $-r_{t+1} \coloneqq r_t \eta \cdot \nabla D(r_t)$
	- Projected r_t onto the feasibility region
- Gradient Sampling:
	- Approximate $\nabla D(r_t)$ using values of D
	- Randomly sample a perturbation vector ϵ of unit length
	- Approximate $\nabla D(r_t)$ by $\widehat{\nabla}D(r_t) := \frac{D(r_t + \delta \epsilon) D(r_t \delta \epsilon)}{2\delta} \cdot \epsilon$
	- $-r_{t+1} \coloneqq r_t \eta \cdot \widehat{\nabla} D(r_t)$
- Challenges:
	- How to obtain the value of $D(r)$?
	- Performance guarantee of the whole procedure

[1] X. Fu and E. Modiano, "Learning-NUM: Network utility maximization with unknown utility functions and queueing delay." 2022. [2] A. Flaxman, A. Kalai, and H. McMahan, "Online convex optimization in the bandit setting: gradient descent without a gradient." 2004.

- Using queue-length observations to estimate steady-state delay
	- Starting from t_0 , employs routing vector r for duration τ $\lim_{\tau \to \infty} \mathbb{E}[Q_e(t_0 + \tau)] = \mathbb{E}_{\pi_r}[Q_e]$
	- Use queue-length observation at $t_0 + \tau$ (for a large enough τ) to approximate $\mathbb{E}_{\pi_r}[Q_e]$
- Proposition:
	- The error $\mathbb{E}[Q_e(t_0 + \tau) \mathbb{E}_{\pi_r}[Q_e(t)]]$ decreases exponentially with τ
	- Analyze the convergence of countable-state Markov chain using Lyapunov drift arguments

- The Gradient Sampling Policy
	- For each iteration $t = 1, ... T$:
	- Randomly sample a perturbation vector ϵ
	- Employ the static routing vector $r_t \delta \epsilon$ for $\tau = \log T$ time slots $t_0 + 1, ..., t_0 + \tau$ $\widehat{D}(r_t - \delta \epsilon)$ as the total queue lengths at $t_0 + \tau$.
	- Employ the static routing vector $r_t + \delta \epsilon$ for $\tau = \log T$ time slots $t_0 + \tau + 1, ..., t_0 + 2\tau$ $\widehat{D}(r_t - \delta \epsilon)$ as the total queue lengths at $t_0 + 2\tau$.
	- Approximate $\nabla D(r_t)$ by $\widehat{\nabla}D(r_t) \coloneqq \frac{\widehat{D}(r_t + \delta \epsilon) \widehat{D}(r_t \delta \epsilon)}{2\delta}$ $\frac{1-D(1t-0\varepsilon)}{2\delta}\cdot\varepsilon$
	- $\tau_{t+1} := r_t \eta \cdot \hat{\nabla} D(r_t)$. (Projected onto the feasibility region)
- Theorem: Let r^* be the optimal routing vector. $D(r_T) D(r^*) = O\left(\frac{\log T}{r}\right)$ \overline{T} A 4
	- Suitable values for δ , η
	- Proof: Bias and variance of the approximate gradients plugging in the dynamics of the gradient descent workflow

Single-hop Network

- Link Type:
	- Type 1: deterministic
	- Type 2: uniform
	- Type 3: bursty
- Load Level:
	- Low: arrival $= 4$
	- Medium: arrival $= 8$
	- High: arrival $= 12$
- Policy:
	- Uniform
	- JSQ
	- Gradient Sampling (GS)

Minimize
$$
\sum \mathbb{E}_{\pi_r}[Q_i]
$$

s. t. $r_i \le 5$, $i = 1,2,3$
 $\sum_{i=1}^{3} r_i = \lambda$

LIDS

- GS can "learn" the link type
	- The bursty link should be avoided if possible
	- GS converges to the optimal static policy, which outperforms JSQ
- The gap decreases with the load

- Link Type:
	- Type 1: deterministic
	- Type 2: uniform
	- Type 3: bursty
- Policy:
	- Uniform
	- UMW
	- GS
- Load Level:
	- Low: $\ar{rival} = 4$
	- Medium: $\text{arrival} = 8$
	- High: arrival $= 12$

Minimize $\sum_{e=1}^{12} \mathbb{E}_{\pi_r}[Q_e]$ s. t. $r_i \leq 5$, $i = 1,2,3$ $\sum_{i=1}^{3} r_i = \lambda$

LIDS

Eytan Modiano Slide 44

• Similarly as in the singlehop network, GS learns to avoid the path of bursty links

Eytan Modiano Slide 45

- The Abilene Network
	- Link rates scaled down by 10. Offered transmissions are generated from Poisson distributions.
	- Two sources and one destination.

 S_1 : STTLng, arrival = 30 S_2 : CHINng, arrival = 40 : ATLAng

- Policy:
	- Uniform
	- UMW
	- BackPressure
	- GSMW [1]

IDS

The problem formulation and the gradient sampling policy can be extended to wireless networks

Minimize
$$
D(r) := \sum_{e \in E} \mathbb{E}_{\pi_r}[Q_e]
$$

s. t. $\sum_{k=1}^{K} r_k = \lambda$,
 $r \in \Lambda$,
 $r_k \ge 0, \forall k$.

- Compute the optimal routing policy for the network with a given scheduling policy
	- The queues still evolve following some underlying Markov chain
	- The gradient sampling policy has the same guarantee if the delay function is convex

- 3*3 Grid Network
	- Type 2 (Poisson) and Type 3 (bursty) links
	- Source: 0, Destination: 8 6 paths
	- Arrival rate: 8
- Scheduling Policy: Max-Weight
- Routing Policy:
	- Uniform (source routing)
	- UMW
	- BackPressure (BP)
	- GS

- Random Geometric Graph
	- 20 nodes in a unit square
	- Distance threshold 0.4
	- Poisson links of rate 20
	- Two source-destination pairs with arrival rates 4
- Scheduling Policy:
	- Max-Weight
- Policy:
	- Uniform (source routing)
	- UMW
	- BackPressure
	- GS
	- AugGS

Learning-based network control (talk outline)

- Tracking Max-Weight (TMW): Learning-aided Max-Weight algorithm
	- Need to learn unknown underlay dynamics
	- Focus on network stabili[ty](http://www.mit.edu/~modiano/papers/CV_J_127.pdf)
- Gradient sampling Max-Weight: Learning-based network utility maximiz
	- Need to learn unknown utility functions
	- Feedback/actions subject to queueing delay
- **Reinforcement learning algorithm for queueing networks [5]**
	- **General optimal control for queueing systems**

[5] Bai Liu, Qiaomin Xie, E. Modiano, "RL-QN: A Reinforcement Learning Framework for Control of Queueing Systems," ACM Trans on Modeling and Performance Eval of Computing Systems," ACM Trans on Modeling and Performance Eval of Computing Systems," (TOMPECS), 2022.

- Most previous work focused on long-term throughput, utility
	- Infinite time horizon, coarse performance metric
- Optimizing finer granularity metrics (e.g., queue-size) is challenging due to curse of dimensionality
	- Limited results for idealized settings
- Reinforcement learning has the potential to solve this problem
	- Neural Nets: promising but little insight
	- Model-based RL (e.g., Upper confidence RL) holds promise for low-complexity insightful solutions
- Approach: Use RL to optimize performance in networks with unknown dynamics
	- Challenge: dealing with unbounded state-space due to queue-size
	- Control actions affect the dynamics of uncontrollable nodes (through the queues)

$$
\pi_u\colon (\omega,\boldsymbol{Q})\mapsto f^u
$$

- Policy takes queue size into account
- Covers state-of-the-art dynamic routing and scheduling algorithms (e.g., BackPressure routing)
- Queue evolution dynamics may be unknown and arbitrary

$$
\boldsymbol{Q}(t+1) = h(\boldsymbol{f}^c(t), \boldsymbol{Q}(t), \omega_t),
$$

where $h(\cdot)$ is some unknown function that depends on our controllable routing action $f^{c}(t)$, the current queue length vector $Q(t)$, and the observed network event ω_{t}

• Optimization is a Markov Decision Problem (MDP)

- Action: $f^c(t)$
- **State:** $Q(t)$
- **State Transition Probabilities**:

 $P(\boldsymbol{Q}'|\boldsymbol{Q}, \boldsymbol{f}^c(t)),$

evolve according to the queueing dynamics $\mathbf{Q}(t + 1) = h(\mathbf{Q}(t)).$

Objective: find a policy π^* that minimizes the long-term average queue length

$$
J^{\pi} = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\sum_{ik} Q_{ik}^{\pi}(t) \right].
$$

• This is an MDP with unknown dynamics

$$
\boldsymbol{Q}(t+1) = h(\boldsymbol{Q}(t)),
$$

i.e., Reinforcement Learning (RL) problem

- The state space (i.e., queue length vector space) Q is countably-infinite
- Existing RL algorithms do not have any performance guarantees in face of countably-infinite state space
- Possible approaches:
	- Truncation: Solve MDP for truncated system [Liang, Modiano, Infocom '18]
	- RL-QN [Liu, Xie, Modiano, Allerton 19]

Optimal performance for queueing networks with unbounded state space

Reinforcement Learning for Queueing Networks (RL-QN) Algorithm

For a Bounded State Space \mathcal{S}^{in}

Apply model-based reinforcement learning scheme

– E.g., Upper-confidence RL (UCRL); episodic exploration/exploitation scheme

Converges to the optimal policy $\tilde{\pi}^*$

For the Rest of the State Space S^{out}

- Use a known stabilizing policy π_0 (common in communication network)
- Apply π_0 to the rest of the states
- **Eytan Modiano Slide 55** Intuition: in stable system the probability of the queue exceeding U decays exponentially in U

Average cost goes to optimal

as S^{in} grows

RL-QN Algorithm (exploration vs. exploitation)

For episodes $k = 1, 2, \dots$

- *w.p.* l/\sqrt{k} , do **exploration**
	- Apply π_{rand} to \mathcal{S}^{in}
	- Apply π_0 to S^{out}
- *w.p.* $1 l/\sqrt{k}$, do **exploitation**
	- Use history data to **estimate** the dynamics of \widetilde{M}
	- **Solve** for estimated optimal policy $\tilde{\pi}_k$
	- Apply $\tilde{\pi}_k$ to \mathcal{S}^{in}
	- Apply π_0 to S^{out}
- When visits to S^{in} exceeds $L\sqrt{k}$, start the

For any $0 < \delta < 1$, there exists $k^* < \infty$ such that our algorithm learns $\tilde{\pi}^*$ (i.e. $\tilde{\pi}_k$) $=$ $\tilde{\pi}^*$) within k^* episodes with probability at least 1 – δ The optimal policy for the bounded system

_IDS

Theorem 2

Under our algorithm, the asymptotic episodic average cost is upper bounded as

$$
\lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\sum_{ik} Q_{ik}(t) \right] = \rho^* + \mathcal{O} \left(\frac{U^{1+\max\{2\alpha,\gamma\}}}{\exp(U)} \right)
$$
\n
$$
\lim_{\text{optimal result}} \frac{1}{\exp(U)} \sum_{j=0}^{T-1} \mathbb{E} \left[\sum_{i} Q_{ik}(t) \right] = \rho^* + \mathcal{O} \left(\frac{U^{1+\max\{2\alpha,\gamma\}}}{\exp(U)} \right)
$$

- We could get arbitrarily close to optimum by increasing U
- But larger U brings heavier computational burden
- Key intuition: in stable system the probability of the queue exceeding U decays exponentially fast in U
- **Eytan Modiano Slide 57**

Simulation

Model

Which user to serve to minimize the average total queue length?

- **Stabilizing policy**: serve the longest connected queue (LCQ) , can bound the queue length [Tassiulas et al., 1993]
- **Minimizing policy**: open problem (except for symmetric cases)
- Reinforcement learning methods might work!

Simulation

Average queue backlog evolution

- π_0 : serve the longest connected queue (LCQ)
- $\tilde{\pi}^* + \pi_0$: the result our algorithm converges to

Results when $U = 5$ Results when $U = 10$

Summary

.IDS

- Network control schemes typically assume known and controllable dynamics
- Unknown and/or uncontrollable dynamics give rise to the need for "learning"
- "Learning" for achieving stability is relatively easy and can be accomplished via the queue dynamics
	- Even traditional backpressure learns the optimal policy via the queue dynamics (primal dual interpretation of optimization problem)
- Learning for optimizing network performance is more challenging because control action affect network state
	- Gradient sampling MaxWeight approach for network utility maximization
	- **RL-QN**: optimizing performance for queueing networks with unbounded statespace