

Learning Algorithms for Optimal Network Control

Eytan Modiano MIT, LIDS

Eytan Modiano Slide 1

.IDS

- Learning network state and dynamics
 - Channels, connectivity, delays, etc.
 - Multi-arm bandit framework
 - "multi-arm bandits with queues"
- Network control in uncooperative environments
 - Some of the nodes are uncontrollable and/or unobservable
 - Network optimization subject to stochastic queueing dynamics
- Performance optimization (i.e., delay)
 - Use ML/RL to solve stochastic optimization problem with large state space
 - Optimal routing, scheduling, etc.
- Control in adversarial environments
 - Nodes intentionally take adversarial actions "online learning framework"
 - Networks under attack (DoS, traffic injection)

- Tracking Max-Weight (TMW): Learning-aided Max-Weight algorithm
 - Need to learn unknown underlay dynamics
 - Focus on network stability
- Gradient sampling Max-Weight: Learning-based network utility maximization
 - Need to learn unknown utility functions
 - Feedback/actions subject to queueing delay
 - Application to delay minimization
- Reinforcement learning algorithm for queueing networks
 - General optimal control framework for queueing systems

Network Model

- Multi-hop wireless network: Only a subset of the links can be activated simultaneously, due to interference
 - Need to make packet routing and link scheduling decisions

- Random arrivals with arrival rates λ_c
 - The λ_c 's are not known in advance
- Time-slotted system

Eytan Modiano Slide 4

LIDS

- Goal: Design a routing and scheduling policy that can support all arrival rates within the network stability region
- Stability Region (Λ*) the set of all admissible arrival rate vectors
 - There exists some policy that will "stabilize" the network with these arrivals
- Notions of stability
 - Bounded queue occupancy
 - Existence of steady state distribution
 - Rate stability: arrival rate = departure rate
- Tassiulas/Ephremides '92

λ

_IDS

The Max-Weight Scheduling Algorithm (Tassiulas/Ephremides '92)

- Only a subset of the links can be activated simultaneously. E.g.,

 - Secondary (2-Hop) interference constraints No two edges can be active if they can be joined by one or fewer edges (e.g., 802.11)
- Throughput optimal scheduling
 - Schedule the max-weight activation set in each time-slot
 - Weights are the queue backlogs

$$\pi^* = \underset{\pi \in \Pi}{\operatorname{argmax}} \sum_{(i,j)} Q_{ij}(t) \pi_{ij}$$

Weight 12

The Backpressure Routing Algorithm (Tassiulas/Ephremides '92)

- Route based on commodities: each commodity $C \in \{1,..,N\}$ corresponds to data associated with a given destination node
- Along each link (a,b) route commodity C that maximizes the differential backlog along that link. i.e.,

$$W_{(a,b)}^* = \max_{c \in \{1..N\}} W_{(a,b)}^c = (U_a^c - U_b^c) \qquad \xrightarrow{c}_{111} \textcircled{a} \xrightarrow{c}_{W_{(a,b)}^c = 3-2=1} \textcircled{b}$$

- Algorithms uses "back pressure" to find the routes
- Link activation: max-weight rule with differential backlogs as weights

- Joint routing and scheduling
$$\pi^* = \underset{\pi \in \Pi}{\operatorname{arg\,max}} \sum_{\underset{(a,b)}{\sum}} W^*_{(a,b)}(t) \pi_{(a,b)}$$

- Backpressure "learns" the "optimal" routes and schedules using queue backlog as feedback
 - Requires all nodes to cooperate: Share queue information
 - Implement the same policy

- Increasingly networks are only partially controllable
- A subset of nodes are not managed by the network operator and could use some unknown network control policy
- Existing optimal control policies may yield poor performance
- Overlay-underlay network: MaxWeight algorithm may lead to throughput loss

.IDS

- Overlay architecture is extremely common
 - Operate over a black-box whose internal dynamics are not known and may not even be observable
 - e.g., over the top service providers, coalition networks
- Network control based on end-to-end feedback
 - Need to learn the dynamics of the underlay network
- Approach: a combination of reinforcement learning and Lyapunov optimization to develop control algorithms based on end-to-end feedback
 - Stability: keep queues bounded
 - Utility maximization

- Tracking Max-Weight (TMW): Learning-aided Max-Weight algorithm
 - Need to learn unknown underlay dynamics
 - Focus on network stability
- Gradient sampling Max-Weight: Learning-based network utility maximization
 - Need to learn unknown utility functions
 - Feedback/actions subject to queueing delay
 - Application to delay minimization
- Reinforcement learning algorithm for queueing networks
 - General optimal control framework for queueing systems

Q. Liang, E. Modiano, "<u>Optimal Network Control in Partially-Controllable Networks</u>," Infocom, 2019.
B. Liu, Q. Liang, E. Modiano, "Tracking MaxWeight: Optimal Control for Partially Observable and Controllable Networks," IEEE/ACM Transactions on Networking," 2023.

_IDS

- Consider a queueing network with *N* nodes and *K* flows
- $Q_{ik}(t)$ is the queue length of flow k at node i in slot t
- In each time slot t, we observe a network event ω_t which includes information about link capacities, external packet arrivals, etc.
 - $\{\omega_t\}_{t\geq 0}$ follow a stationary stochastic process
- Each node *i* needs to make a routing decision *f_{ijk}(t)* indicating the offered transmission rate for flow *k* over link *i* → *j*
 - $\tilde{f}_{ijk}(t)$ = actual transmitted packets, may be smaller than $f_{ijk}(t)$

_IDS

- The set of all nodes is denoted by \mathcal{N}
 - Network routing vector is $\mathbf{f}(t) = \{f_{ijk}(t)\}_{i \in \mathcal{N}}$
- The set of **controllable** nodes is denoted by \mathcal{C}
 - Controllable action $f^{c}(t) = \{f_{ijk}(t)\}_{i \in \mathcal{C}}$
 - Controllable policy $\pi_c: (\omega, \mathbf{Q}) \mapsto \mathbf{f}^c$
- The set of **uncontrollable** nodes is denoted by \mathcal{U}
 - Uncontrollable action $\mathbf{f}^{u}(t) = \{f_{ijk}(t)\}_{i \in \mathcal{U}}$
 - Uncontrollable policy $\pi_u: (\omega, \mathbf{Q}) \mapsto \mathbf{f}^u$

Objective: design controllable policy π_c such that the entire network is rate stable:

$$\lim_{t\to\infty}\frac{\mathbb{E}[Q_{ik}(t)]}{t}=0,\qquad\forall i\in\mathcal{N},k.$$

Eytan Modiano Slide 12

• **Queue-agnostic** uncontrollable policy (*ω*-only policy):

 $\pi_u:\omega\mapsto \pmb{f}^u$

• Uncontrollable node simply observe the current network event ω_t and makes a routing decision

- "stateless"

- Simple yet cover a wide range of practical protocols:
 - Shortest-path routing (OSPF, RIP)
 - Multi-path routing (ECMP)
 - Randomized routing

Failure of Backpressure (BP) Algorithm

- Each node can only transmit to one of its neighbors in each slot.
- Only one flow: $1 \rightarrow 4$ (with rate 20)
- Uncontrollable node 2 transmits to node 3 at full line rate.
- Uncontrollable node 3 holds any packets it received.
- Backlogs are always zero at node 2, so BP always sends packets to node 2 although they cannot be delivered.

Why Backpressure (BP) Algorithm fails?

- Node 3 uses a non-work-conserving policy such that flow conservation law is not preserved at node 3.
- However, BP is not aware of the behavior of node 3 since node 2 hides this fact from node 1.
- Lesson learned : A good network control algorithm must be aware of the uncontrollable policy and react accordingly.

LIDS

- TMW enhances the original Max-Weight algorithm with an implicit learning of the policy used by uncontrollable nodes
- TMW produces control actions for controllable nodes and generates an "emulated" action for uncontrollable nodes
- TMW aims to
 - Stabilizing a virtual system with "emulated" uncontrollable actions
 - Minimizing the gap between the "emulated" and the true uncontrollable action

- Let $f^u(t)$ be the true action taken by uncontrollable nodes in slot t
- Let $g(t) = (g^{c}(t), g^{u}(t))$ be the routing decisions generated by TMW
 - $g^c(t)$ is the action for controllable nodes
 - $g^{u}(t)$ is the "emulated" action for uncontrollable nodes
- Gap between $f^u(t)$ and $g^u(t)$:

$$\Delta_{ijk}(t) = g_{ijk}(t) - \tilde{f}_{ijk}(t), \qquad \forall i \in \mathcal{U}$$

where $\tilde{f}_{ijk}(t)$ is the actual number of transmitted packets under offered rate $f_{ijk}(t)$

TMW maintains two types of virtual queues

• Virtual queue X(t) is the backlog in the "emulated" system:

$$X_{ik}(t+1) = \left[X_{ik}(t) + a_{ik}(t) + \sum_{j \in \mathcal{N}} g_{jik}(t) - \sum_{j \in \mathcal{N}} g_{ijk}(t) \right]^{+}$$

• Virtual queue *Y*(*t*) characterizes the cumulative difference between the "emulated" action and the true action:

$$Y_{ijk}(t+1) = Y_{ijk}(t) + \Delta_{ijk}(t),$$

where $\Delta_{ijk}(t) = g_{ijk}(t) - \tilde{f}_{ijk}(t), \ \forall i \in \mathcal{U}$

• TMW requires ability to observe underlay $(\tilde{f}_{ijk}(t))$

– Sparse and noisy observations

Eytan Modiano Slide 18

TMW Algorithm

LIDS

$$\max_{\boldsymbol{g}(t)\in\mathcal{F}_{\omega_{t}}}\sum_{(i,j)}\sum_{k}g_{ijk}(t)W_{ijk}(t),$$

where

$$W_{ijk}(t) = X_{ik}(t) - X_{jk}(t) - Y_{ijk}(t).$$

- 2. Apply g(t) to controllable nodes
- 3. Update virtual queues X(t) and Y(t)

- TMW uses BP routing on the virtual queues, offset by *Y*
- The offset *Y* drives the emulated actions g^u toward the actual actions f^u , i.e., drives $\Delta \rightarrow 0$

- Uncontrollable node 2 transmits to node 3 at full line rate
- Uncontrollable node 3 holds any packets it received
- Backlog is always zero at node 2, so BP always sends packets to node 2 although they cannot be delivered

- With TMW Y_{34} will continue to grow because node 3 does not send
- Create "backpressure" away from node 3 in "emulated" system

$$W_{ijk}(t) = X_{ik}(t) - X_{jk}(t) - Y_{ijk}(t).$$

^{Eytan Modiano} • Eventually node 1 will stop sending to node 2 and g_{34}^u will go to 0

Theorem

If uncontrollable nodes use an ω -only policy, and their state can be observed, then the TMW algorithm can stabilize the physical queue Q(t)whenever possible

Proof

- Show that TMW can stabilize the two virtual queues X(t) and Y(t)
- Show that if the two virtual queues X(t) and Y(t) can be stabilized, then the physical queue Q(t) can also be stabilized

- Delayed/Sparse Observations:
 - Denote by $\tau_i(t)$ the most recent time we have an observation of node *i*
 - Denote by $L_i(t) = t \tau_i(t)$, the delay at t

Theorem: When $\sum_{t=0}^{T-1} L_i(t)/T = o(T)$ for every $i \in U$, then the TMW algorithm can stabilize the physical queues Q(t) whenever possible

 As long as the average observation delay is sublinear in *T*, TMW is throughput-optimal for partially observable and controllable setting

LIDS

- Noisy observations
 - Denote by $\epsilon_{ijk}(t)$ the estimation error in $W_{ijk}(t)$
 - Estimation error in observation of underlay queues

Theorem: When $|\epsilon_{ijk}(t)| = o(t)$ for every $i \in U$ and k, then TMW can stabilize the physical queues Q(t) whenever possible

 If the estimation error grows sublinearly in *t*, TMW is throughputoptimal

Includes case of constant noise (O(1))

LIDS

Model

- All links have the capacity of 5
- Node 8, 9 and 13 are uncontrollable and unobservable
 - Uniformly route $0 \sim 5$ packets on each outgoing link

Stability performance (sparse observation)

- Suppose the observations are sparse (nodes in *U* can only be observed every *L* time units).
- Max-Weight (i.e., BackPressure) fails to stabilize the system.

Tracking of underlay queue backlogs (sparse observation with L = 10)

• TMW quickly controls the gap between X_{ik} and Q_{ik} .

LIDS

Stability performance with noisy observations

- Tracking Max-Weight (TMW): Learning-aided Max-Weight algorithm
 - Need to learn unknown underlay dynamics
 - Focus on network stability
- Gradient sampling Max-Weight: Learning-based network utility maximization
 - Unknown utility functions
 - Application to minimum delay routing
- Reinforcement learning algorithm for queueing networks
 - General optimal control for queueing systems

[3] Xinzhe Fu, E. Modiano, "Learning-NUM: Network Utility Maximization with Unknown Utility Functions and Queueing Delay," IEEE/ACM Transactions on Networking," 2022.
[4] Xinzhe Fu, E. Modiano, "A Learning Approach to Minimum Delay Routing in Stochastic Queueing Networks," Infocom 2023.

- NUM objective: maximize sum utilities subject to capacity constraints
 - $g_i(r)$ the "utility" of allocating rate r to class i traffic
- Previous works consider known utility functions
 - E.g., proportional fairness: g(r) = log(r)
- The utility functions may be unknown in advance
 - User satisfaction (e.g., video quality)
 - Average delay
- Key challenges/novelty:
 - Unknown utility functions: Power consumption of links, delay, user satisfaction
 - Feedback delay: Function values are observed after decisions are made

maximize: $\sum_{i} g_{i}(r_{i})$

Subject to: $\underline{\mathbf{r}} \in \Lambda$, $\underline{\mathbf{r}} \leq \underline{\lambda}$

Goal: Minimizing regret over time-horizon T

- The Gradient Sampling Max-Weight Algorithm
 - Choose user rates: r_i 's
 - Use feedback to construct approximate gradients

gradient = $\frac{[g_i(r_i+\delta)-g_i(r_i-\delta)]}{2\delta}$

- Use Max-Weight to determine the network routing and scheduling decisions: Ensure network stability: constraint $r \in \Lambda$
- Update the rate variables based on approximate gradients and queue lengths

$$r_i(t+1) \coloneqq r_i(t) + \frac{1}{\alpha} \cdot (gradient - V \cdot queue \ length)$$

- Primal-Dual Interpretation:
 - Primal variables: rates r_i 's
 - Dual variables: queue lengths Q_n 's, corresponding to constraint $r \in \Lambda$
 - Update primal and dual variables based on gradient of the Lagrangian
 Primal: gradient V * queue lengths

Dual: queue length dynamic

Eytan Modiano Slide 30

• Dealing with feedback delay

- The Parallel-Instance GSMW
 - If feedback delay is Z slots, initiate Z instances of GSMW
 - Since delay is unknown and time-varying, can generate "new" instances dynamically while waiting for feedback

- Regret: R(T)
 - The cumulative difference between the utility achieved by the algorithm and the optimal over a time horizon of *T* time slot
- When the feedback is noiseless: GSMW achieves $R(T) = O(\sqrt{T})$
- When the feedback is noisy: GSMW achieves $R = O(max\{\sqrt{T}, T^{(2+2\beta)/3}\})$
 - β = noise parameter

Each observation is corrupted by an i.i.d. zero-mean random noise with standard deviation bounded by T^{β} ($\beta \leq 0$)

- Regret increases from $O(\sqrt{T})$ to $O(T^{\frac{2}{3}})$ as noise increases

- Sublinear regret corresponds to "optimality" as the regret per unit time goes to zero
- Noise can represent imprecise measurement or feedback errors

Simulation Results

- Parallel server network
- Utility is function of server and data rate
 - Mix of logarithmic, polynomial and linear functions
- GSMW stabilizes the network and achieves sublinear regret
 - Sublinear regret = asymptotic optimality

Queue-length

Regret

• I.I.d noise Uniform [-noise, noise]

LIDS

- Minimum Delay Routing [1]
 - K paths $\{P_1, \dots, P_K\}$ from source s to destination d
 - Route incoming traffic of rate λ along the paths
 - Capacity region Λ
 - Compute the optimal rates $r = (r_1, ..., r_K)$
 - Flow on link e associated with rate vector r: $f_e^r = \sum_{k:e \in P_k} r_k$
- Assumptions:
 - $D_e(f_e)$ is the delay of link *e* when the rate is f_e
 - D_e is convex, non-decreasing and known

$$\begin{array}{l} \text{Minimize } \sum_{e \in E} D(f_e^r) \\ \text{s. t. } \sum_{k=1}^K r_k = \lambda , \\ r \in \Lambda , \\ r_k \geq 0, \forall k. \end{array}$$

[1] R. Gallager, "A minimum delay routing algorithm using distributed computation." 1977.

Minimum Delay Routing in Stochastic Queueing Networks

- Parallel M/M/1 Queues
 - $\rho_i = r_i/\mu$
 - $\mathbb{E}_{\pi_r}[Q_i(t)] = \rho_i/(1-\rho_i)$
 - Optimal: $r_1 = r_2 = r_3 = \frac{\lambda}{3}$.

- M/M/1 queues and deterministic queue
 - Route more traffic to the deterministic queue.

The delay function depends on link characteristics that are unknown apriori.

- Network Model
 - Arrival rate a(t), i.i.d., with $\mathbb{E}[a(t)] = \lambda$
 - Route the incoming packets along K paths $\{P_1, \dots, P_k\}$
 - Static routing policy parameterized by routing vector $r = (r_1, ..., r_K)$
 - Queue length of link e at time $t: Q_e(t)$
 - Steady-state queue length distribution under rate $r: \pi_r$
 - By Little's law, λ^* (steady-state delay) = $\sum_{e \in E} \mathbb{E}_{\pi_r}[Q_e] \coloneqq D(r)$
- Problem Formulation
 - Find r that minimizes D(r)
 - D(r) is unknown, but queue lengths are observable
 - *Learn* the delay function and the optimal static routing policy

```
\begin{array}{l} \text{Minimize } \mathrm{D}(\mathbf{r})\coloneqq\sum_{e\in E}\mathbb{E}_{\pi_r}[Q_e]\\ \text{s. t. } \sum_{k=1}^K r_k=\lambda\,,\\ r\in\Lambda\,,\\ r_k\geq 0,\forall k. \end{array}
```


- Assumptions: D(r) is a convex function of r
 - Proved for single queues [1]
 - We show the convexity for tandem queues via stochastic coupling
 - It follows that convexity holds for networks with disjoint paths
- Static Routing vs. Dynamic Routing
 - We study the optimal static routing policy that makes decisions independent of queue lengths
 - Dynamic policies can outperform the optimal static policy, but few results are known
 - In simulations, the optimal static policy outperforms common dynamic policies

$$\begin{array}{l} \text{Minimize } \mathrm{D}(\mathbf{r}) \coloneqq \sum_{e \in E} \mathbb{E}_{\pi_r}[Q_e] \\ \text{s. t. } \sum_{k=1}^{K} r_k = \lambda \,, \\ r \in \Lambda \,, \\ r_k \geq 0, \forall k. \end{array}$$

[1] M. Neely and E. Modiano, "Convexity in queues with general inputs." 2005.

DS

- Projected Gradient Descent:
 - $\quad r_{t+1} \coloneqq r_t \eta \cdot \nabla D(r_t)$
 - Projected r_t onto the feasibility region
- Gradient Sampling:
 - Approximate $\nabla D(r_t)$ using values of D
 - Randomly sample a perturbation vector $\boldsymbol{\epsilon}$ of unit length
 - Approximate $\nabla D(\mathbf{r}_t)$ by $\widehat{\nabla} D(\mathbf{r}_t) \coloneqq \frac{D(r_t + \delta \epsilon) D(r_t \delta \epsilon)}{2\delta} \cdot \epsilon$
 - $\quad r_{t+1} \coloneqq r_t \eta \cdot \widehat{\nabla} D(r_t)$
- Challenges:
 - How to obtain the value of D(r)?
 - Performance guarantee of the whole procedure

[1] X. Fu and E. Modiano, "Learning-NUM: Network utility maximization with unknown utility functions and queueing delay." 2022.
 [2] A. Flaxman, A. Kalai, and H. McMahan, "Online convex optimization in the bandit setting: gradient descent without a gradient." 2004.

- Using queue-length observations to estimate steady-state delay
 - Starting from t_0 , employs routing vector r for duration τ $\lim_{\tau \to \infty} \mathbb{E}[Q_e(t_0 + \tau)] = \mathbb{E}_{\pi_r}[Q_e]$
 - Use queue-length observation at $t_0 + \tau$ (for a large enough τ) to approximate $\mathbb{E}_{\pi_r}[Q_e]$
- Proposition:
 - The error $\mathbb{E} |Q_e(t_0 + \tau) \mathbb{E}_{\pi_r}[Q_e(t)]|$ decreases exponentially with τ
 - Analyze the convergence of countable-state Markov chain using Lyapunov drift arguments

- The Gradient Sampling Policy
 - For each iteration t = 1, ... T:
 - Randomly sample a perturbation vector ϵ
 - Employ the static routing vector $r_t \delta \epsilon$ for $\tau = \log T$ time slots $t_0 + 1, ..., t_0 + \tau$ $\widehat{D}(r_t - \delta \epsilon)$ as the total queue lengths at $t_0 + \tau$.
 - Employ the static routing vector $r_t + \delta \epsilon$ for $\tau = \log T$ time slots $t_0 + \tau + 1, ..., t_0 + 2\tau$ $\widehat{D}(r_t - \delta \epsilon)$ as the total queue lengths at $t_0 + 2\tau$.
 - Approximate $\nabla D(\mathbf{r}_t)$ by $\widehat{\nabla} D(\mathbf{r}_t) \coloneqq \frac{\widehat{D}(\mathbf{r}_t + \delta \epsilon) \widehat{D}(\mathbf{r}_t \delta \epsilon)}{2\delta} \cdot \epsilon$
 - $r_{t+1} \coloneqq r_t \eta \cdot \hat{\nabla} D(r_t)$. (Projected onto the feasibility region)
- Theorem: Let r^* be the optimal routing vector. $D(r_T) D(r^*) = O\left(\frac{\log T}{T}\right)^{\frac{1}{4}}$
 - Suitable values for δ , η
 - Proof: Bias and variance of the approximate gradients plugging in the dynamics of the gradient descent workflow

Single-hop Network

- Link Type:
 - Type 1: deterministic
 - Type 2: uniform
 - Type 3: bursty
- Load Level:
 - Low: arrival = 4
 - Medium: arrival = 8
 - High: arrival = 12
- Policy:
 - Uniform
 - JSQ
 - Gradient Sampling (GS)

$$\begin{array}{l} \text{Minimize } \sum \mathbb{E}_{\pi_r}[Q_i] \\ \text{s. t. } r_i \leq 5, \quad i = 1,2,3 \\ \sum_{i=1}^3 r_i = \lambda \end{array}$$

- GS can "learn" the link type
 - The bursty link should be avoided if possible
 - GS converges to the optimal static policy, which outperforms JSQ
- The gap decreases with the load

- Link Type:
 - Type 1: deterministic
 - Type 2: uniform
 - Type 3: bursty
- Policy:
 - Uniform
 - UMW
 - GS
- Load Level:
 - Low: arrival = 4
 - Medium: arrival = 8
 - High: arrival = 12

 $\begin{array}{l} \text{Minimize } \sum_{e=1}^{12} \mathbb{E}_{\pi_r}[Q_e] \\ \text{s. t. } r_i \leq 5, \quad i = 1,2,3 \\ \sum_{i=1}^3 r_i = \lambda \end{array}$

LIDS

Disjoint Paths

• Similarly as in the singlehop network, GS learns to avoid the path of bursty links

Eytan Modiano Slide 45

- The Abilene Network
 - Link rates scaled down by 10.
 Offered transmissions are generated from Poisson distributions.
 - Two sources and one destination.

 S_1 : STTLng, arrival = 30 S_2 : CHINng, arrival = 40 D: ATLAng

- Policy:
 - Uniform
 - UMW
 - BackPressure
 - GSMW [1]

IDS

• The problem formulation and the gradient sampling policy can be extended to wireless networks

$$\begin{array}{l} \text{Minimize } \mathrm{D}(\mathbf{r})\coloneqq\sum_{e\in E}\mathbb{E}_{\pi_r}[Q_e]\\ \text{s. t. } \sum_{k=1}^K r_k=\lambda\,,\\ r\in\Lambda\,,\\ r_k\geq 0,\forall k. \end{array}$$

- Compute the optimal routing policy for the network with a given scheduling policy
 - The queues still evolve following some underlying Markov chain
 - The gradient sampling policy has the same guarantee if the delay function is convex

- 3*3 Grid Network
 - Type 2 (Poisson) and Type 3 (bursty) links
 - Source: 0, Destination: 86 paths
 - Arrival rate: 8
- Scheduling Policy: Max-Weight
- Routing Policy:
 - Uniform (source routing)
 - UMW
 - BackPressure (BP)
 - GS

- Random Geometric Graph
 - 20 nodes in a unit square
 - Distance threshold 0.4
 - Poisson links of rate 20
 - Two source-destination pairs with arrival rates 4
- Scheduling Policy:
 - Max-Weight
- Policy:
 - Uniform (source routing)
 - UMW
 - BackPressure
 - GS
 - AugGS

LIDS

- Tracking Max-Weight (TMW): Learning-aided Max-Weight algorithm
 - Need to learn unknown underlay dynamics
 - Focus on network stability
- Gradient sampling Max-Weight: Learning-based network utility maximization
 - Need to learn unknown utility functions
 - Feedback/actions subject to queueing delay
- Reinforcement learning algorithm for queueing networks [5]
 - General optimal control for queueing systems

[5] Bai Liu, Qiaomin Xie, E. Modiano, "<u>RL-QN: A Reinforcement Learning Framework for Optimal</u> <u>Control of Queueing Systems</u>," ACM Trans on Modeling and Performance Eval of Computing Systems (TOMPECS), 2022.

- Most previous work focused on long-term throughput, utility
 - Infinite time horizon, coarse performance metric
- Optimizing finer granularity metrics (e.g., queue-size) is challenging due to curse of dimensionality
 - Limited results for idealized settings
- Reinforcement learning has the potential to solve this problem
 - Neural Nets: promising but little insight
 - Model-based RL (e.g., Upper confidence RL) holds promise for low-complexity insightful solutions
- Approach: Use RL to optimize performance in networks with unknown dynamics
 - Challenge: dealing with unbounded state-space due to queue-size
 - Control actions affect the dynamics of uncontrollable nodes (through the queues)

$$\pi_u: (\omega, \boldsymbol{Q}) \mapsto \boldsymbol{f}^u$$

- Policy takes queue size into account
- Covers state-of-the-art dynamic routing and scheduling algorithms (e.g., BackPressure routing)
- Queue evolution dynamics may be unknown and arbitrary

$$\boldsymbol{Q}(t+1) = h(\boldsymbol{f}^{c}(t), \boldsymbol{Q}(t), \omega_{t}),$$

where $h(\cdot)$ is some unknown function that depends on our controllable routing action $f^{c}(t)$, the current queue length vector Q(t), and the observed network event ω_{t}

• Optimization is a Markov Decision Problem (MDP)

LIDS

- Action: $f^c(t)$
- State: Q(t)
- State Transition Probabilities:

 $P(\boldsymbol{Q}'|\boldsymbol{Q},\boldsymbol{f}^{c}(t)),$

evolve according to the queueing dynamics Q(t + 1) = h(Q(t)).

• **Objective**: find a policy π^* that minimizes the long-term average queue length

$$J^{\pi} = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\sum_{ik} Q_{ik}^{\pi}(t) \right].$$

LIDS

• This is an MDP with unknown dynamics

$$\boldsymbol{Q}(t+1) = h(\boldsymbol{Q}(t)),$$

i.e., Reinforcement Learning (RL) problem

- The state space (i.e., queue length vector space) Q is countably-infinite
- Existing RL algorithms do not have any performance guarantees in face of countably-infinite state space
- Possible approaches:
 - Truncation: Solve MDP for truncated system [Liang, Modiano, Infocom '18]
 - RL-QN [Liu, Xie, Modiano, Allerton 19]

Optimal performance for queueing networks with unbounded state space

Reinforcement Learning for Queueing Networks (RL-QN) Algorithm

For a Bounded State Space S^{in}

• Apply model-based reinforcement learning scheme

E.g., Upper-confidence RL (UCRL); episodic
 exploration/exploitation scheme

• Converges to the optimal policy $\tilde{\pi}^*$

For the Rest of the State Space S^{out}

- Use a known stabilizing policy π_0 (common in communication network)
- Apply π_0 to the rest of the states
- Intuition: in stable system the probability of the queue exceeding U decays
 Eytan Modiano Slide 55
 exponentially in U

Average cost goes to optimal

as S^{in} grows

RL-QN Algorithm (exploration vs. exploitation)

For episodes $k = 1, 2, \cdots$

- w.p. l/\sqrt{k} , do exploration
 - Apply π_{rand} to S^{in}
 - Apply π_0 to **S**^{out}
- *w.p.* $1 l/\sqrt{k}$, do **exploitation**
 - Use history data to **estimate** the dynamics of \widetilde{M}
 - Solve for estimated optimal policy $\tilde{\pi}_k$
 - Apply $\tilde{\pi}_k$ to \mathcal{S}^{in}
 - Apply π_0 to S^{out}
- When visits to S^{in} exceeds $L\sqrt{k}$, start the

Eytan Modiano

Slide 57

Theorem 1

For any $0 < \delta < 1$, there exists $k^* < \infty$ such that our algorithm learns $\tilde{\pi}^*$ (i.e. $\tilde{\pi}_k$ = $\tilde{\pi}^*$) within k^* episodes with probability at least $1 - \delta$ The optimal policy for the bounded system

Theorem 2

Under our algorithm, the asymptotic episodic average cost is upper bounded as

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left[\sum_{ik} Q_{ik}(t) \right] = \rho^* + \mathcal{O} \left(\frac{U^{1 + \max\{2\alpha, \gamma\}}}{\exp(U)} \right)$$

Optimal result Buffer size of the bounded system \tilde{M}

- We could get arbitrarily close to optimum by increasing U
- But larger *U* brings heavier computational burden
- Key intuition: in stable system the probability of the queue exceeding U decays exponentially fast in U

Simulation

Model

Which user to serve to minimize the average total queue length?

- Stabilizing policy: serve the longest connected queue (LCQ), can bound the queue length [Tassiulas et al., 1993]
- Minimizing policy: open problem (except for symmetric cases)
- Reinforcement learning methods might work!

Simulation

Average queue backlog evolution

- π_0 : serve the longest connected queue (LCQ)
- $\tilde{\pi}^* + \pi_0$: the result our algorithm converges to

Results when U = 5

Results when U = 10

Summary

_IDS

- Network control schemes typically assume known and controllable dynamics
- Unknown and/or uncontrollable dynamics give rise to the need for "learning"
- "Learning" for achieving stability is relatively easy and can be accomplished via the queue dynamics
 - Even traditional backpressure learns the optimal policy via the queue dynamics (primal dual interpretation of optimization problem)
- Learning for optimizing network performance is more challenging because control action affect network state
 - Gradient sampling MaxWeight approach for network utility maximization
 - RL-QN: optimizing performance for queueing networks with unbounded statespace