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Conventional: Minimize average loss
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Conventional: Minimize average loss
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Minimizing risk measures

excess loss
scenarios.
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For minimizing sample average,

excess-loss
probability = g

CVaRl_ﬁ lL(X, 0)]
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Eg: for tail level g = 1/40,

to achieve 10% relative errorin
optimum portfolio's CVaR for
100 stocks,

need ~14 years of
daily returns data

Perils of minimizing
sample average with
insufficient samples:

Lim, Shanthikumar & Vahn '11
Caccioli, Paap & Condor '18
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A statistical bottleneck: Incorrect distributional model
affects downstream optimization

4 4 h
; del estimate p | optimize decic
ata » Mode > model parameters [~ »| min p(6,P) [T > decision
, 7] 1
: model-selection :

the need to carefully
handle bias created by
plugging-in a wrong
distributional model



A statistical bottleneck: Incorrect distributional model
affects downstream optimization

Handling model-bias:
» Better models

» Expressive model classes

> Inject conservative bias with
robust optimization



A statistical bottleneck: Incorrect distributional model
affects downstream optimization

Handling model-bias:

» Better models
Pickands dependence function (Pickands ‘81)

» Expressive model classes d-max decreasing neural nets (Hasan et al '22)

> Inject conservative bias with
robust optimization



A statistical bottleneck: Incorrect distributional model
affects downstream optimization

Handling model-bias:
» Better models

» Expressive model classes

» Inject conservative bias with

robust optimization Worst-case CVaR and robust chance constraints

El Ghaoui ‘03, Calafiore and El Ghaoui 06,
Chen et al 10, Zymler ‘13, Natarajan et al
‘14, Hanasusanto et al ‘15, ‘17, Van Parys et
al 15, Van Parys et al '16,

Esfahani and Kuhn ‘18, Lofti & Zenios ‘18,
Duan et al 18, Jiang & Guan ‘18, Xie ‘18, Xie
& Ahmed 18, Li et al '19, Xie & Ahmed ‘19,
Zhang et al 18, Ji & Lejeune 21, Chen et
al’22, Rahimian and Mehrotra ‘22



A statistical bottleneck: Incorrect distributional model
affects downstream optimization

Handling model-bias:
» Better models

» Expressive model classes

> Inject conservative bias with
robust optimization

Convexity constraint (Mottet & Lam "17)
Orthounimodal shape constraints (Lam et al '21)



A statistical bottleneck: Incorrect distributional model
affects downstream optimization

Handling model-bias:

Given a distributional model,
» Better models

can we have an algorithm to “debias”
» Expressive model classes

the objective of its nonparametric

» Inject conservative bias with model error?
robust optimization




A computational bottleneck:
Rarity implies prohibitive no. of scenarios/samples required

- - . "\ 4 ™

4 del estimate p | optimize decic

ata —» modade — model parameters > —:—> ecision
e :

prohibitive
computation needed
due to large number of
samples/scenarios



A computational bottleneck:
Rarity implies prohibitive no. of scenarios/samples required

Variance reduction techniques

» Importance sampling, stratified sampling,
control variates, etc.

» Importance scenario generation

» Problem-driven scenario generation
Fairbrother et al ‘19



A computational bottleneck:
Rarity implies prohibitive no. of scenarios/samples required

Variance reduction techniques

» Importance sampling, stratified sampling,
control variates, etc.

» Importance scenario generation

» Problem-driven scenario generation

Fairbrother et al '19 Dantzig & Glynn ‘90

Dantzig & Infanger '93

Rubinstein & Shapiro '93

Shapiro & Homem-de-Mello '98

Nemirovski & Shapiro '06

Barrera et al '14

Kozmik & Morton '14

Parpas et al '15

Birge '12, Homem-de-Mello & Bayraskan '15 (reviews)
Blanchet, Zhang & Zwart '20

He, Jiang, Lam & Fu, 21



Prominent hurdles & solution approaches

» Even two random vectors proportional to each other can be
"nearly singular” to each other in large dimensions

Nemirovski & Shaprio ‘06



Prominent hurdles & solution approaches

portfolio credit risk

VaR
normal ( GHS'oo
extremal GHS'o2

iid heavy-tailed
log-elliptical

Naive Monte Carlo

GLlog
GKS'o8
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Prominent hurdles & solution approaches

Ioefvlzlszurves Inred: excess loss samples X | L(X) > u
N ,
> iy e
U
X ~ multivariate normal X ~ heavier-tailed X ~ exponential marginals +

Weibull marginals + Gaussian copula
Gaussian copula



Prominent hurdles & solution approaches

level curves
of loss Inred: excess loss samples X | L(X) > u
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Prominent hurdles & solution approaches

Step 1: Propose a Step 2: Set up OPT for Step 2:
QI “good” alternate the best candidate in Solvepgl.DT
(objective + distribution family to the family sample &
distribution) sample from reweigh by

informed by large likelihood ratio

deviations analysis



Prominent hurdles & solution approaches

Etep 1:IPropose a Step 2: Set up OPT for Srenk:
QI “good” alternate the best candidate in Solve OPT
(objective + distribution family to the family sample &

distribution) sample from reweigh by
likelihood ratio

informed by large
deviations analysis

For multivariate normal:

« quadratic program (Glasserman et al ‘oo, 'o5)
+ combinatorial structure (Glasserman et al'08)

« Mixed-integer program (Bai et al '20)



Prominent hurdles & solution approaches

Etep 1:IPropose a Step 2: Set up OPT for Ere—
QI “good” alternate the best candidate in Solve OPT
(objective + distribution family to the family sample &

distribution) sample from reweigh by
likelihood ratio

informed by large
deviations analysis

==

L(X) = 0.2X; + 0.8X, L(X) = 0.8X; + 0.2X,



Prominent hurdles & solution approaches

What is a good sampler for one decision ::> a bottleneck in optimization

choice is often not good for other
(Barrera et al '14)

eatldy ‘f‘
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Prominent hurdles & solution approaches
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Prominent hurdles & solution approaches

Can we have samplers which are
efficient & broadly applicable?
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Prominent hurdles & solution approaches

Can we have samplers which are How to integrate seamlessly with
efficient & broadly applicable? optimization?




Prominent hurdles & solution approaches

Can we have samplers which are How to integrate seamlessly with
efficient & broadly applicable? optimization?

Can we have an algorithm which adapts its

Importance Sampling distribution to the objective at hand?




Two questions in this talk

Qa: Can we have an algorithm which adapts its

Importance Sampling distribution to the objective at hand?

(computational bottleneck)

Q2: Given a distributional model, can we have an algorithm to

“debias” the objective of its nonparametric model error?

(statistical bottleneck)



A key observation
and its implications for the two bottlenecks



Recall: Why efficient samplers are elusive?

In red: excess loss samples X | L(X) > u
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Key observation: Tail events occur in structurally similar ways

In blue: excess loss samples X | L(X) > [

Inred: excesslosssamples X | L(X) > u
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Key idea: Tail events occur in structurally similar ways

Is there ONE transformation which can induce each of these 'red' profiles when
applied to these less-rare 'blue' samples?

T N

X ~ multivariate normal X ~ heavier-tailed X ~ exponential marginals +
Weibull marginals + Gaussian copula
Gaussian copula




Search for a good density — Search for a good transformation



Search for a good density — Search for a good transformation

model 1 .. It 4 fl is
model2 e Ja.is
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Resolving the computational bottleneck

Qa: Can we have an algorithm which adapts its

Importance Sampling distribution to the objective at hand?

- A fixed elementary transformation of the samples is efficient!

- Suited for a broad variety of risk management models,
including those using sophisticated predictors

- Ability to resolve the bottleneck in variance reduction for
optimization models with CVaR objectives or chance-constraints



Resolving the statistical bottleneck

Q2: Given a plug-in distributional model, can we have a

procedure to “debias” the objective?

Debiased objective = objective with plug-in + a correction term

- Objective has zero sensitivity to perturbations in plug-in model



Resolving the statistical bottleneck

Q2: Given a plug-in distributional model, can we have a

procedure to “debias” the objective?

Debiased objective = objective with plug-in + a correction term
- Objective has zero sensitivity to perturbations in plug-in model

If modeller’s choice induces a bias = ¢, in the objective,
bias in debiased objective is only 7!

Convexity retained in the debiased objective



Resolving the statistical bottleneck

Q2: Given a plug-in distributional model, can we have a

procedure to “debias” the objective?

Debiased objective = objective with plug-in + a correction term
Objective has zero sensitivity to perturbations in plug-in model

If modeller’s choice induces a bias = ¢, in the objective,
bias in debiased objective is only 7!

Convexity retained in the debiased objective

Newey and Stoker, ‘93

Murphy and van der Vaart ‘97 Debiasing in Operations
Van der Vaart ‘99 Research literature
Chernozhukov et al. ‘16, ‘17 Gupta, Huang, Rusmevichientong °2 |

Foster and Syrgkanis ‘19
Newey and Ichimura '22



Resolving the statistical bottleneck

Q2: Given a distributional model, can we have an algorithm to

“debias” the objective of its nonparametric model error?

Debiased objective = objective(lA’) + acorrection term




Resolving the statistical bottleneck

Q2: Given a distributional model, can we have an algorithm to

“debias” the objective of its nonparametric model error?

Debiased objective = objective(lA’) + acorrection term

- Debiased objective has zero sensitivity to perturbations in plug-in model

( A A

If modeller’s choice of P Debiased objective only
induces a bias = 0p(8n) II: carries a bias = OP((?’%)

. J . J

- Convexity retained in the debiased objective!



Outline of the talk

» |ntroduction

Challenges due to rarity & model-bias

-~ Why algorithmic approaches have been elusive?

Key observation & its implications

Qi: Can a sampler adapt its IS distribution to the problem-at-hand?
~ Q2: Can we correct the plug-in model-bias?

Summary



Tail modeling based for studying self-similarity




Tail modeling based for studying self-similarity
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Tail modeling based for studying self-similarity
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pdf of X = exp(—¢(x)) Some examples:
. elliptical densities,
po PX) 5 tial famil
im = p*(x) . exponential family,
n—oo p(nl) . log-concave densities,
:  Gaussian copula,
t-copula,
archimedean copula, ...

(that is, ¢ is regularly varying) + light/heavy-tailed
marginals
Heavy-tailed:

pdf of X is regularly varying

(See, eg. Resnick ‘07, '08)



pdf of X = exp(—¢p(x))

o PX)
11m
n— 00 qo(nl)

P*(x)

Uncovering a large deviations principle

(that is, ¢ is regularly varying)

Theorem [Deo and M '21]
X/n satisfies a large deviations principle:

P(X € nA) =exp{—t,0*(A)+o(t,)}

and the above similarity in conditional
excess loss distributions hold



Setup: Assumptions on the loss

Asymptotically homogenous loss: M

lim = L*(x) |
n—ooco NP level sets of L

200

Some examples:

df of X = exp(—gp(x
P P(=¢(x)) LP, MILP, QP objectives with

i p(nx) I random coefficients,
n— 00 go(nl)

their optimal values,

(that is, ¢ is regularly varying)

losses written in terms of feature
maps/decision rules specified with
kernels and ReLU neural networks



Large deviations mechanics:
Intersection of level curves determine the most likely excess loss samples

Asymptotically homogenous loss:
eg: + correlated multivariate normal

_ L(nx)
lim = L*(x) {x: L*x) > 1)
pdf of X = exp(—¢p(x)) ”‘ =>
. p(nx)
lim = @™*(x :
n—oo (p(nl) P ) : “o

. _ _ : X =arg min @*x)
(that is, @ is regularly varying) x:L*(x)>1

inred: samplesof X |L(X) > u



Large deviations mechanics:
Intersection of level curves determine the most likely excess loss samples

Asymptotically homogenous loss:

L
lim (nx) = L*(x)

n—oo NP

eg: + correlated multivariate normal

. {x:L*x) > 1}
E Xn Xy 4

pdf of X = exp(—¢p(x)) =>

. @(nx) :
lim = @p*(x :
oo go(nl) % ( ) : u X1
. . . - X =arg min @*(x)
(that is, ¢ is regularly varying) x:L*(x)>1

inred: samplesof X |L(X) > u



Large deviations mechanics:
Intersection of level curves determine the most likely excess loss samples

Asymptotically homogenous loss:

L
lim (nx) = L*(x)

n— 00 nr

eg: + correlated multivariate normal

{x:L*x) > 1}

pdf of X = exp(—¢p(x))

nx
lim 29 _ ey
(that is, ¢ is regularly varying) in blue: samplesof X | L(X) > [

in red: samplesof X |L(X) > u



Large deviations mechanics:
Intersection of level curves determine the most likely excess loss samples

Asymptotically homogenous loss:

L
lim (nx) = L*(x)

n— 00 nr

eg: weibull marginals, gaussian copula

{x:L*x) > 1}

X2

-------------------------------------------------------- R .‘. } . ‘\\
pdf of X = exp(—¢p(x)) L «-,\\ }\*’ .' j =
lim p(nx) = p*(x) : ‘}: l @ Xi \\
n—oo p(nl) i 1
(that is, ¢ is regularly varying) in blue: samplesof X | L(X) > I

in red: samplesof X |L(X) > u



Back to concentration preserving transformation

Canwe find a .

rate-point preserving transformation | eg: weibull marginals, gaussian copula

that is oblivious to the underlying '
objective and the distribution?

{x: L*x) > 1}

X2

-,A-x1

in blue: samplesof X | L(X) >
in red: samplesof X |L(X) > u



Concentration-preserving stretching

Canwe find a
rate-point preserving transformation
that is oblivious to the underlying

objective and the distribution? X LAee) 2 1)

rd T
T(x) = s"®x
. J
where
1 log|x]
K(x) =
p log x|l

s = scalar stretch
parameter



Concentration-preserving stretching, in action

Multivariate normal

1()

=

p log |lx]lo + normal copula
s = scalar stretch b f.
parameter 1710° &
* T(°:)
1/100 s




Concentration-preserving stretching, in action

Multivariate normal

X
Ff“ T
T(x) = s"®x
o _J /“5
where 1 log|x| ﬁ
K(x) =
p log x|l

Proposition [Deo & M "21]. In the generality considered,
1) the theoretically optimal sampler and
parameter 2) the transformed excess loss samples
concentrate their mass on the same set of points, albeit at
different rates

s = scalar stretch



Logarithmic efficiency

!I""
Theorem.

Minimizing CVaR,_4(L,(X)) With the

— kx) :
I'(x)=s""x > proposed sampleris log-efficientas g — 0.
L .
with the
rlogk 1 proposed
# sample p sampler
g &3

require 1 without

. — Importance

p sampling



Numerical experiments

Probability of excess loss in a portfolio with 3000 loans
Default probability modeled by a ReLU network with 1 hidden layer

var[without IS]

var[with IS]
variance reduction by a

10° factor of 107 — 10*

3.75
10
10 2.5
101.25

0 loan default

10(-3) 10/(-4) 101(-5) 107(-6) probability

subexponential covariates

. , + gaussian copula
superexponential covariates



Minimizing CVaR objective

Illustration of portfolio optimization objective with 15 assets

samples
rquU|r.ed to be 30000 sample-.aver:':\ge
within 0.1% 3 approximation
optimality gap ’
22500
15000 25X
7500
. 6 x proposed sampler
0 & O O O O 2

3/100 2/100 1.25/100 7.5/1000 5/1000 3/1000
tail level p



Outline of the talk

» |ntroduction

Challenges due to rarity & model-bias

-~ Why algorithmic approaches have been elusive?

Key observation & its implications

Qi: Can a sampler adapt its IS distribution to the problem-at-hand?
» Q2: Can we correct the plug-in model-bias?

Summary



Debiased learning: Related literature

Debiasing in Statistics:
Old and new

Newey and Stoker, ‘93
Murphy and van der Vaart ‘97
Van der Vaart ‘99
Chernozhukov et al. '16, '17
Foster and Syrgkanis ‘19
Newey and Ichimura '22

Debiasing in Operations
Research literature

Gupta, Huang, Rusmevichientong ’2 |



An overview of the debiased objective

data from unknown P

£~ " - \

model for P Optimize
_’ ._’

grey region with P —» decision

y = fraction of samples in
grey region

Debiased objective = objective(f’) + acorrection term



An overview of the debiased objective

data from unknown P

model for P Optimize .
' - —> .. — decision
grey region with P
y = fraction of samples in
grey region
Debiased objective = objective(P?) '+ a correction term

|

‘ Y + | (Rockafellar &
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An overview of the debiased objective

data from unknown P

model for P Optimize .
' - —> .. — decision
grey region with P
y = fraction of samples in
grey region
Debiased objective = objective(P?) '+ a correction term

|

‘ 2 . 1+ | (Rockafellar &
1£9f {u+ B Ep |LX.0) —u } Uryasev '02)

Call this Ep | &




What is the correction term?

E=[LX.0)—ul

error due to model-misspecification

= Ep|¢&] - Ep¢]




What is the correction term?

E=[LX.0)—ul

error due to model-misspecification

= Ep|&] - Ep|¢]
o] o

D _ ,—h
. [(S(d{’_l)] dP = e™dP



What is the correction term?

E=[LX.0)—ul

error due to model-misspecification

= Ep|&| - Ep[¢]
_ [édP] i [5]
P dp P
dP dP = e7"dP
=FE; | & ——1 o .
4 h = zero mean,
homogenous function
~ Ep [cfh] df P, P are taiI-simiIaL

(as log pdf is nearly homogenous)



Restricting to self-similar class lowers variance

E=|LX.0)—ul”

error due to model-misspecification

= Ep|&-h]

dP = e 'dp

4 ™y
h = zero mean,

homogenous function

if ]A’, P are tail-similar
\ .,




Restricting to self-similar class lowers variance

E=|LX.0)—ul”

error due to model-misspecification

= Ep|&-h]

EP[Eﬁ[ﬂ‘o}]'h]

. dP = e~"dP

best zero mean ~ ~y

. = zerom
homogenous function h cro mean,
L homogenous function
approximating &

Qf ]A’, P are tail-similar

-




Restricting to self-similar class lowers variance

E=[LX.0)—ul

error due to model-misspecification

= Ep[&-h)

Eﬁ[Eﬁ[flg‘]'h]

> 4 dP = e "dP

best zero mean ~ ~y

- h = zero mean
homogenous function :
L homogenous function
approximating &

Qf ]A’, P are tail-similar

-

can be understood as gradient at P
(efficient influence function)



Restricting to self-similar class lowers variance

E=|LX.0)—ul”

error due to model-misspecification

= Ep[&-h]
= Ep|Ep|e1F] ]
zEp_Els[ng‘T]] .
: dP = e~ "dP
— samp|e mean of Ep[é: | 9] 8 h = zero mean h

homogenous function
+n 2 CLT term

if ]A’, P are tail-similar
\ .,




Can we correct plug-in model bias?

E=|LX.0)—ul”

error due to model-misspecification

= sample mean of Ejp [5 | 3‘7]

+n Y2CLT term
+ sec. order terms



Can we correct plug-in model bias?

E=[LX.0)—ul

error due to model-misspecification

= sample mean of Ejp [5 | 3‘7]

+n Y2CLT term
+ sec. order terms

Evaluating E» [5 | 97] amounts to finding the best approx. to &in the span(e;, e,)

under the plug-in measure
here e,(x) = @(x)— Ef’Lx [ P(X) ]
e)(x) = P)logx —Ep | p(X)log X |



Can we correct plug-in model bias?

E=[LX.0)—ul

debiased objective

=FE; [£] + sample mean of Ep[f | 3‘7]

;

» Neyman orthogonal: orthogonal to model perturbations

Derivative of the debiased
objective w.r.to € is zero



Can we correct plug-in model bias?

E=[LX.0)—ul

debiased objective

=E;[{] + sample mean of Ep[f | 3‘7]

;

» Neyman orthogonal: orthogonal to model perturbations

Error rates

4 ™ *p
Plug-in objective: 0, (rate(N)) R

Debiased objective: 0, (rate’(V))
. y

Derivative of the debiased
objective w.r.to € is zero



Can we correct plug-in model bias?

E=[LX.0)—ul

debiased objective

=FE; [£] + sample mean of Ep[f | 3‘7]

;

» Neyman orthogonal: orthogonal to model perturbations

» Convexity is retained

» Can be understood as a first-order Taylor approximation on
the subset of distributions with self-similar tails



Can we correct plug-in model bias?

E=[LX.0)—ul

debiased objective

=FE; [£] + sample mean of Ep[f | 3‘7]

Contrast with RO/ DRO

worst-case objective  sSup px) = p(p)+5(|Vp (Pl
lx—pll<é

debiased objective p(p) =~ p(p)+{(Vp(p),p—p)

(debiasing = a targeted notion of robustness)



Numerical experiments

Portfolio optimization with 5 assets, given 1000 return samples

data generated from
70% multivariate normal +
30% t-copula

plug-in = multivariate normal

0.65

E [ returns ]

o
o

0.45

0.4

Out-of-sample Pareto frontier

—— SAA
— SP

Debig

2.5 3.5

Out-of-éample CVaR

Minimize CVaR at tail level 1/ 300
subject to return requirement

sed
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Portfolio optimization with 5 assets, given 1000 return samples

Out-of-sample Pareto frontier

0.65

o
o

E [ returns |

0.5

1sed

0.45

data generated from g
50% multivariate normal + 04 e
50% t-copula

Out-of-sample CVaR
plug-in = multivariate normal

Minimize CVaR at tail level 1/ 300
subject to return requirement



Numerical experiments

Portfolio optimization with 5 assets, given 1000 return samples

data generated from
20% multivariate normal +
80% t-copula

plug-in = multivariate normal

E [ returns ]

0.65

o
o

o
&)
a

o
o

0.45

0.4

Out-of-sample Pareto frontier

—

(e

2.4 2.6 2.8 3 3.2 3.4

Out-of-sample CVaR

Minimize CVaR at tail level 1/ 300
subject to return requirement

3.6

sed



Performance under distribution shift
Portfolio optimization with 5 assets, given 750 return samples

Relative regret in
out-of-sample
CVaR

50

—— SAA
—— SP

——— Debiased

0.3

mixture probability

0.4 0.5 0.6 0.7

normal marginals +

multivariate normal plug-in = multivariate normal
t-copula



Summary: The two bottlenecks

; del estimate p | optimize .
ata—> model > | del parameters —— decision
A 5
e model-selection ... ;
the need to carefully prohibitive
handle bias created by Computation needed
plugging-in a wrong due to large number of

distributional model samples/scenarios



Summary: Algorithmic variance reduction with self-similar tails

Step 1: Propose an Step 2: Set up OPT for

QI[N "q00d" distribution the best candidate in S:It/eepC?I;T
(objective + family the family sampler
distribution)

informed by large ?
deviations analysis \ é ;
b <

Automate, informed by large deviations

search for alternate search for a concentration-
distribution ':> preserving transformation



Summary: Algorithmic variance reduction with self-similar tails

2 ‘ .7 :ﬁ » :-,:f‘
Applied probability, S ;:[ﬁ Optimization under
rare events = L 70 uncertainty

minimizing CVaR,
: chance-constraints
=+ with sample-averaging

Tailored efficient samplers >
for stylized QRM models ~



Summary: Algorithmic bias reduction with self-similar tails

Debiased objective = objective (IA’) + a correction term

Objective has zero sensitivity to model perturbations

If modeller’s choice induces a bias = €, in the objective,
bias in debiased objective is only £

Convexity retained in the debiased objective

Estimate, then o Decision-aware
N ll Debiasing - :
optimize learning




