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Department of Wind and Energy Systems
Working for a sustainable future

~100 people working on power systems
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Electric Power Systems 
PWR Section: 28+3 members; 20 nationalities
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AC/DC Wind Power Lab
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PWR: Advanced Methods and Tools for Power System 
Security and Control
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Methods Going Beyond the 
State-of-the-art 

1. Trustworthy AI for Power 
Systems

2. Quantum Computing

3. Cyber Physical Systems

4.Energy Data Spaces

5. Stability, Optimization, and 
Control of Zero-Inertia 
Systems

Advanced Tools

1. World-Record in Fast Real-
time Security Assessment of 
Electric Power Systems

2. Open-Source Models of the 
Nordic and European Systems

3. Digitalization tools for e.g. 
grid black start

4.Digital Twins for Power 
Systems

Applications

1. RTDS infrastructure and 
Hardware-in-the-Loop

2. Demonstration in 
Bornholm

3. System-stability and 
operation including the 
Bornholm and North Sea 
Energy Islands

PWR: Advanced Methods and Tools for Power 
System Security and Control
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Machine learning: Why shall we apply it in power systems? 

1. Extremely fast   can assess  100x-1’000x  more of critical scenarios

• computation within only a few milliseconds (100x – 1000x faster than conventional methods)

– Predict fast and act faster drastically increase power system resilience

2. Can handle very complex systems and infer from incomplete data

• Excellent potential to create accurate surrogate models

– Accelerate simulations; and offer good approximations of previously intractable systems

But: Would an Operator ever trust AI in the Control Room?

8
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This talk: Two Challenges and One Opportunity

• Challenge #1: Machine Learning is extremely dependent on high-quality data. 

• Challenge #2: Has the Neural Network been trained to generalize well? Can we 
trust it?

• Opportunity: “AI for Optimization”. Use trustworthy Machine Learning to capture 
(=approximate well) previously intractable constraints and embed them in any 
optimization problem

– Example1: Instead of running 10,000 scenarios to determine the critical clearing 
time of a converter-based system, run a single optimization.

9

1G. S. Misyris, J. Stiasny, S. Chatzivasileiadis, Capturing Power System Dynamics by Physics-Informed 
Neural Networks and Optimization. IEEE Conference on Decision and Control  (CDC), 2021 . [ .pdf ]

Abbreviations I will use:

• ML: Machine Learning

• NN: Neural Network

https://arxiv.org/pdf/2103.17004.pdf
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Facts Consequence

Challenge #1:            
ML extremely 
dependent on     
high-quality data

1. All data are not the same
For a NN that assesses if a system is stable, 
training data close to the stability boundary 
contain much more information than 
training data far away from it. 

Statistical sampling is not enough

10
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ML extremely 
dependent on     
high-quality data

1. All data are not the same
For a NN that assesses if a system is stable, 
training data close to the stability boundary 
contain much more information than 
training data far away from it. 

Statistical sampling is not enough

2. Training data must follow the same 
statistical properties as real data
Do we have enough historical data about 
e.g. outages? Is this possible?

1. For power systems: We have so many 
physical models. Add them!

2. We cannot trust “Neural Network 
Accuracy” as a performance metric
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training data close to the stability boundary 
contain much more information than 
training data far away from it. 

Statistical sampling is not enough

2. Training data must follow the same 
statistical properties as real data
Do we have enough historical data about 
e.g. outages? Is this possible?

1. For power systems: We have so many 
physical models. Add them!

2. We cannot trust “Neural Network 
Accuracy” as a performance metric

Challenge #2:         
Has NN been trained 
to generalize well?

3. NN training is an extremely complex 
optimization procedure
Prone to overfitting/underfitting

Can we trust it? 
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Closing the Loop: A Framework for Trustworthy 
Machine Learning in Power Systems

16

J. Stiasny, S. Chevalier, R. Nellikkath, B. Sævarsson, S. Chatzivasileiadis. Closing the Loop: A Framework for Trustworthy 
Machine Learning in Power Systems. Accepted to 2022 iREP Symposium - Bulk Power System Dynamics and Control - XI 
(iREP). Banff, Canada. July 2022. [ paper | code ]

https://arxiv.org/abs/2203.07505
https://github.com/jbesty/irep_2022_closing_the_loop
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Closing the Loop: Trustworthy ML for Power Systems

17

Training 
Database

Train Neural 
Network

Satisfied?

yes
no

Ready to deploy in 
a real application

Conventional Neural Network Training for Power System Applications
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Closing the Loop: Trustworthy ML for Power Systems
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Training 
Database

Train Neural 
Network

Satisfied?

yes
no

“Sampling beyond 
Statistics”

Focus on High-
Information Content 
Regions: Separating 

hyperplanes and 
Directed Walks
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Closing the Loop: Trustworthy ML for Power Systems
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Training 
Database

Train Neural 
Network

with/without 
Physics-Informed

Satisfied?

yes
no

“Sampling beyond 
Statistics”

Focus on High-
Information Content 
Regions: Separating 

hyperplanes and 
Directed Walks
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Closing the Loop: Trustworthy ML for Power Systems
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Training 
Database

Train Neural 
Network

with/without 
Physics-Informed

Satisfied?

yes
no

“Sampling beyond 
Statistics”

Enrich Database: 
NN-Informed 

Sampling

“Sampling beyond 
Statistics”

Focus on High-
Information Content 
Regions: Separating 

hyperplanes and 
Directed Walks
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Closing the Loop: Trustworthy ML for Power Systems
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Training 
Database

Train Neural 
Network

with/without 
Physics-Informed

NN Verification/
Worst-case 
Guarantees

Final NN with 
Performance 
Guarantees

Trustworthy AI

Satisfied?

yes
no

“Sampling beyond 
Statistics”

Enrich Database: 
NN-Informed 

Sampling

“Sampling beyond 
Statistics”

Focus on High-
Information Content 
Regions: Separating 

hyperplanes and 
Directed Walks
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Closing the Loop: Trustworthy ML for Power Systems
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Training 
Database

Train Neural 
Network

with/without 
Physics-Informed

NN Verification/
Worst-case 
Guarantees

Final NN with 
Performance 
Guarantees

“Sampling beyond 
Statistics”

Enrich Database: 
Verification-

Informed Sampling

Satisfied?

yes
no

Trustworthy AI

Satisfied?

yes
no

“Sampling beyond 
Statistics”

Enrich Database: 
NN-Informed 

Sampling

“Sampling beyond 
Statistics”

Focus on High-
Information Content 
Regions: Separating 

hyperplanes and 
Directed Walks
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Sampling beyond Statistics:
Separating Hyperplanes and Directed Walks

• Historical data are often insufficient

• Need to generate our own data 

• Here: generate data for N-1 
security+small-signal stability
– Assessing the stability of 100’000s of 

operating points is an extremely demanding 
task

– Immense search space

– How can I do it efficiently?

23

F. Thams, A. Venzke, R. Eriksson, and S. Chatzivasileiadis, ”Efficient 
database generation for data-driven security assessment of power 
systems”. ”.  IEEE Trans. Power Systems, vol. 35, no. 1, pp. 30-41, Jan. 
2020. https://www.arxiv.org/abs/1806.0107.pdf

https://www.arxiv.org/abs/1806.0107.pdf
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Sampling beyond Statistics:
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• Historical data are often insufficient

• Need to generate our own data 

• Here: generate data for N-1 
security+small-signal stability
– Assessing the stability of 100’000s of 

operating points is an extremely demanding 
task

– Immense search space

– How can I do it efficiently?
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Proposed approach: 

• Can accommodate numerous 
definitions of power system security (e.g. 
N-1, N-k, small-signal stability, voltage 
stability, transient stability, or a 
combination of them)

• 10-20 times faster than existing state-of-
the-art approaches

• Generated Databases for IEEE 14-bus 
and NESTA 162-bus system available!
http://www.chatziva.com/downloads.html#databases

F. Thams, A. Venzke, R. Eriksson, and S. Chatzivasileiadis, ”Efficient 
database generation for data-driven security assessment of power 
systems”. ”.  IEEE Trans. Power Systems, vol. 35, no. 1, pp. 30-41, Jan. 
2020. https://www.arxiv.org/abs/1806.0107.pdf

http://www.chatziva.com/downloads.html#databases
https://www.arxiv.org/abs/1806.0107.pdf
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• The goal
– Focus on the boundary between 

stability and instability

– We call it: “high information content” 
region

• How?
1. Using convex relaxations

2. And “Directed Walks” 

25

Unstable regions

Stable region High information 
content

Real data for the IEEE 14-bus system
N-1 security and small-signal stability

Sampling beyond Statistics:
Efficient Database Generation
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Convex relaxations 
to discard infeasible 
regions

26

Non-convex 
stable region
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Convex relaxations 
to discard infeasible 
regions

27

Non-convex 
stable region

• Certificate: if point infeasible for 
semidefinite relaxation 
infeasible for the original problem

convex 
relaxation
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Convex relaxations 
to discard infeasible 
regions

28

Non-convex 
stable region

• Certificate: if point infeasible for 
semidefinite relaxation 
infeasible for the original problem

• If infeasible point: find minimum 
radius to feasibility

convex 
relaxation
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Convex relaxations 
to discard infeasible 
regions
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Non-convex 
stable region

convex 
relaxation

• Certificate: if point infeasible for 
semidefinite relaxation 
infeasible for the original problem

• If infeasible point: find minimum 
radius to feasibility

• Discard all points on one side of 
the hyperplane

• A. Venzke, D.K. Molzahn, S. Chatzivasileiadis, 
Efficient Creation of Datasets for Data-Driven 
Power System Applications. PSCC 2020. 
https://arxiv.org/pdf/1910.01794.pdf

https://arxiv.org/pdf/1910.01794.pdf
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• “Directed walks”: steepest-
descent based algorithm to 
explore the remaining search 
space, focusing on the area 
around the security boundary

1. Variable step-size

2. Parallel computation

3. Full N-1 contingency check

Directed Walks
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Results

Points close to the security boundary 
(within distance γ)

IEEE 14-bus NESTA 162-bus

Brute Force 100% of points in 556.0 min intractable

Importance Sampling 100% of points in 37.0 min 901 points in 35.7 hours

Proposed Method 100% of points in 3.8 min 183’295 points in 37.1 hours

31
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NN-Informed Sampling

• Ideally: enrich the database with points near the 
stability  boundary during NN training

– But: impossible to know a priori which are these 
points

• What do we do? 

32
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NN-Informed Sampling

• Ideally: enrich the database with points near the 
stability  boundary

– But: impossible to know a priori which are these 
points

• What do we do? 

1. Sample 1’000’000 random points and have 
the NN assess them

• Extremely fast NN will take some minutes 
to assess all of them

33
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NN-Informed Sampling

• Ideally: enrich the database with points near the 
stability  boundary

– But: impossible to know a priori which are these 
points

• What do we do? 

1. Sample 1’000’000 random points and have 
the NN assess them

• Extremely fast NN will take some minutes 
to assess all of them

2. From the NN assessment: identify the region 
close to the stability boundary

34
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NN-Informed Sampling

• Ideally: enrich the database with points near the 
stability  boundary

– But: impossible to know a priori which are these 
points

• What do we do? 

1. Sample 1’000’000 random points and have 
the NN assess them

• Extremely fast NN will take some minutes 
to assess all of them

2. From the NN assessment: identify the region 
close to the stability boundary

3. Sample 200 points in this region, compute the 
ground truth (=run N-1 and small signal 
stability), and enrich the database

35
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Sampling beyond statistics: 
Better results with less data

• Larger datasets achieve 
lower error

– 64 : ~2x more data than  54

– 74 : ~4x more data than  54

• The directed walks and the 
NN-informed resampling 
achieve the same 
performance with half the 
datapoints

36

Number of datapoints

Mean squared error (test set loss)

Note: Actual performance of DW and NI 
depends on the case study. But the trend 
remains the same across all our experiments
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Sampling beyond statistics: 
Better results with less data

• Larger datasets achieve 
lower error

– 64 : ~2x more data than  54

– 74 : ~4x more data than  54

• The directed walks and the 
NN-informed resampling 
achieve the same 
performance with half the 
datapoints

• Physics-Informed Neural 
Networks can achieve 
similar results

37

Number of datapoints

Mean squared error (test set loss)

Note: Actual performance of DW, NI, and PINNs 
depends on the case study. But the trend 
remains the same across all our experiments
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Physics-Informed Neural 
Networks for Power Systems

38
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min
𝑤𝑤1,𝑤𝑤2

𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖

s.t.
�𝑦𝑦𝑖𝑖 = 𝑤𝑤1 + 𝑤𝑤2𝑥𝑥𝑖𝑖 ∀𝑖𝑖

39

𝑥𝑥

𝑦𝑦 �𝑦𝑦𝑖𝑖 = 𝑤𝑤1 + 𝑤𝑤2𝑥𝑥𝑖𝑖

𝑦𝑦𝑖𝑖: actual/correct value

�𝑦𝑦𝑖𝑖: estimated value

Loss function: Estimate best 𝑤𝑤1, 𝑤𝑤2
to fit the training data

Traditional training of neural networks 
required no information about the 

underlying physical model. Just data!

Neural Networks: An advanced 
form of non-linear regression
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Physics Informed Neural Networks

• Automatic differentiation: derivatives of the neural network output with 
respect to the input can be computed during the training procedure

• A differential-algebraic model of a physical system can be included in the 
neural network training*

• Neural networks can now exploit knowledge of the actual physical system

• Machine learning platforms (e.g. Tensorflow) enable these capabilities

40

*M. Raissi, P. Perdikaris, and G. Karniadakis, Physics-Informed neural networks: A deep learning framework for solving forward and 
inverse problems involving nonlinear partial differential equations", Journal of Computational Physics, vol.378, pp. 686-707, 2019
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Physics-Informed Neural Networks for Power Systems

41

“Original”     
Loss function

G. S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural 
Networks for Power Systems. Presented at the Best Paper Session of 
IEEE PES GM 2020.  https://arxiv.org/pdf/1911.03737.pdf

https://arxiv.org/pdf/1911.03737.pdf
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Physics-Informed Neural Networks for Power Systems

42

“Original”     
Loss function

Swing equation

“Physics-Informed” 
term

G. S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural 
Networks for Power Systems. Presented at the Best Paper Session of 
IEEE PES GM 2020.  https://arxiv.org/pdf/1911.03737.pdf

https://arxiv.org/pdf/1911.03737.pdf
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Physics-Informed Neural Networks for Power Systems

43

Code is available on GitHub: https://github.com/jbesty

G. S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural Networks for Power Systems. Presented at the 
Best Paper Session of IEEE PES GM 2020. https://arxiv.org/pdf/1911.03737.pdf

• Physics-Informed Neural Networks (PINN) could 
potentially replace solvers for systems of 
differential-algebraic equations in the long-term

– Probable power system application: 
Extremely fast screening of critical 
contingencies

• In our example: PINN 87 times faster than ODE 
solver

• Can directly estimate the rotor angle at any time 
instant

https://github.com/jbesty
https://arxiv.org/pdf/1911.03737.pdf
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Computation time: 
Classical numerical solvers vs. Physics-Informed NNs

• Physics-Informed Neural Networks can 
determine the outputs more than 100x faster 
than classical numerical solvers

– The further we look in time, e.g. what is the 
frequency at t=1s, the larger the 
computational advantage is

44

Classic solvers

PINNs

RK45 #1

RK45 #2

RK45 #3

PINN #1

PINN #2
PINN #3

0.01s 0.1s 1s
J. Stiasny, G. S. Misyris, S. Chatzivasileiadis, Transient Stability Analysis with 
Physics-Informed Neural Networks. https://arxiv.org/abs/2106.13638 [ code ] 

https://arxiv.org/abs/2106.13638
https://github.com/jbesty
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Closing the Loop: Trustworthy ML for Power Systems

45

Training 
Database

Train Neural 
Network

with/without 
Physics-Informed

NN Verification/
Worst-case 
Guarantees

Final NN with 
Performance 
Guarantees

Trustworthy AI

Satisfied?

yes
no

“Sampling beyond 
Statistics”

Enrich Database: 
NN-Informed 

Sampling

“Sampling beyond 
Statistics”

High-Information 
Content: Separating 

hyperplanes and 
Directed Walks
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Neural Network Verification
for classification NNs in Power Systems

46

A. Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for Power System Applications.
In IEEE Transactions on Smart Grid, vol. 12, no. 1, pp. 383-397, Jan. 2021, https://arxiv.org/pdf/1910.01624.pdf

V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural networks with mixed integer 
programming,” in International Conference on Learning Representations (ICLR 2019), 2019

https://arxiv.org/pdf/1910.01624.pdf
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Neural Network Verification: HOW?

1. Exact transformation: Convert the neural network to a set of linear equations with 
binaries

• The Neural Network can be included in a mixed-integer linear program

2. Formulate an optimization problem (MILP)  and solve it  certificate for NN behavior

3. Assess if the neural network output complies with the ground truth

47
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• Most usual activation function: ReLU

• ReLU: Rectifier Linear Unit

48

𝑤𝑤35

𝑤𝑤24

𝑢𝑢𝑖𝑖𝑖𝑖 𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜

𝑢𝑢5

𝑢𝑢4𝑢𝑢2

𝑢𝑢3

From Neural Networks to 
Mixed-Integer Linear Programming

Linear weightsNon-linear 
activation 
functions

input

output
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From Neural Networks to 
Mixed-Integer Linear Programming

input

output

1. But ReLU can be transformed to a piecewise 
linear function with binaries

If input<0 , set
binary =0  use

linear function #1
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From Neural Networks to 
Mixed-Integer Linear Programming

input

output

1. But ReLU can be transformed to a piecewise 
linear function with binaries

If input>0 , set
binary =1  use

linear function #2

If input<0 , set
binary =0  use

linear function #1
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From Neural Networks to 
Mixed-Integer Linear Programming

2. I can encode all operations of a Neural Network 
to a system of linear equations with continuous 
and binary variables

3. I can integrate all information encoded in a 
neural network inside an optimization 
program

input x

output y

1. But ReLU can be transformed to a piecewise 
linear function with binaries

If binary =0, 

y=0
If binary =1, 

y=x
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Certify the output for a continuous range of inputs

52

A. Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for Power 
System Applications. IEEE Transactions on Smart Grid, Jan. 2021.  https://arxiv.org/pdf/1910.01624.pdf

1. We assume a given input xref with 
classification “safe”

https://arxiv.org/pdf/1910.01624.pdf
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Certify the output for a continuous range of inputs
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1. We assume a given input xref with 
classification “safe”

2. Solve optimization problem: Does 
classification change for any input 
within distance ε from xref?

3. If not, then I can certify that my neural 
network will classify the whole 
continuous region as “safe”

4. I can repeat this for other regions and 
different classifications

A. Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for Power 
System Applications. IEEE Transactions on Smart Grid, Jan. 2021.  https://arxiv.org/pdf/1910.01624.pdf

https://arxiv.org/pdf/1910.01624.pdf
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Provable Worst-case Guarantees
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Venzke, G. Qu, S. Low, S. Chatzivasileiadis, Learning Optimal Power Flow: Worst-case Guarantees for Neural 
Networks.  Best Student Paper Award at IEEE SmartGridComm 2020. https://arxiv.org/pdf/2006.11029.pdf

R. Nellikkath, S. Chatzivasileiadis, Physics-Informed Neural Networks for Minimising Worst-Case Violations in DC 
Optimal Power Flow. In IEEE SmartGridComm 2021, Aachen, Germany, October 2021.

R. Nellikkath, S. Chatzivasileiadis. Physics-Informed Neural Networks for AC Optimal Power Flow. 2021.

https://arxiv.org/pdf/2006.11029.pdf
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Neural Networks for Optimal Power Flow
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Optimal Power Flow

Minimize Total Generation Cost

Subject to: 

Total supply = Total load demand

Transmission line limits

Generator limits

Several recent approaches in literature apply 
Neural Networks to estimate the optimal 
point 

• Demonstrate up to 100x speedup

• But no performance guarantees Does 
the Neural Network decision lead to any 
violations? 

We have developed methods that can for the 
first time determine these worst-case 
violations (of any Neural Network to an OPF)

• Key point: Convert NN to a MILP
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Worst violation over the 
whole training dataset 

(training+test set)
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Our algorithm: provable
worst-case guarantee over 

the whole input domain

Maximum violation of 
generator limits

Maximum violation of 
line limits
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Worst violation over the 
whole training dataset 

(training+test set)
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Our algorithm: provable
worst-case guarantee over 

the whole input domain

Maximum violation of 
generator limits

Maximum violation of 
line limits

Over the whole input domain 
violations can be much larger 
(here ~7x) compared to what 
has been estimated empirically 
on the dataset
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Worst violation over the 
whole training dataset 

(training+test set)

58

New algorithm: provable
worst-case guarantee over 

the whole input domain

Maximum violation of 
generator limits

Maximum violation of 
line limits

We can now provide guarantees 
that no NN output will violate 
the line limits over the whole 
input domain
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The opportunity
“AI for Optimization”

59
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The opportunity: 1-slide summary
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Intersection of all 
security/stability criteria: 
Non-linear and non-
convex security region

1. Take any non-
convex region

2. Train a NN to 
approximate it

RELUs as activ. functions

3. Convert NN to a MILP

(remember NN 
verification?)

MILP

4. Solve any problem

Example1: Instead of running 
e.g. 10’000 simulations to 
determine  the critical clearing 
time for a set of disturbances, 
run a single optimization:

max fault clearing time
s.t. system=safe 

1Misyris, Stiasny, Chatzivasileiadis, CDC, 2021
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An Example

• North Sea Wind Power Hub

• Wind Hub Operators offer energy and
primary frequency control and primary
voltage control

– Can determine both P and Q, and

– Kp,f and Kv (freq. droop and voltage droop)

• What are the permissible combinations of 
P,Q, Kp,f , and Kv that satisfy: 

– Small-signal Stability (e.g. ζ>3%), for all

– N-1 contingencies

Problem extremely difficult to solve: infinite 
combinations

J. Stiasny, S. Chevalier, R. Nellikkath, B. Sævarsson, S. Chatzivasileiadis. Closing 
the Loop: A Framework for Trustworthy Machine Learning in Power Systems. 
Accepted to 2022 iREP Symposium - Bulk Power System Dynamics and 
Control - XI (iREP). Banff, Canada. 2022. [ paper | code ]

https://arxiv.org/abs/2203.07505
https://github.com/jbesty/irep_2022_closing_the_loop
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Opportunity: Convert Verified Neural Network 
to an Optimization Problem 

62

For given operating point (𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟∗ ,𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟∗ ), what is the 
maximum range of frequency and voltage control 
parameters  (𝐾𝐾𝑝𝑝,𝑟𝑟 and 𝐾𝐾𝑣𝑣) that ensures small-
signal stability for all N-1 contingencies?

Optimization Problem #1

MILP
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Opportunity: Convert Verified Neural Network 
to an Optimization Problem 
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For given frequency and voltage control, what is 
the maximum permissible range of active and 
reactive power (𝑃𝑃 and 𝑄𝑄) that ensures small-
signal stability for all N-1 contingencies?

Optimization Problem #2

MILP
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Wrap-up
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1. Sampling beyond statistics can yield high quality 
training databases with smaller amounts of data

2. Physics-informed neural networks exploit the 
underlying physics in the training procedure. 

3. Neural network verification builds the missing 
trust; necessary in safety-critical systems.

4. From 1000s of simulations to a single 
optimization: Neural Networks can capture 
previously intractable constraints and embed 
them in any optimization problem 

“Data-centric AI movement”                   
(Andrew Ng, Stanford, and others)

“Small [data] is the new big” 
(IEEE Spectrum, Apr. 2022)

Exploit the prior knowledge
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What did I not talk about
Exploring a wide range of research directions

1. Accelerating MILPs: using Decision Trees to estimate the active set and drastically reduce the 
number of binary variables  [ https://arxiv.org/pdf/2010.06344.pdf , IEEE Trans. Power Systems]

2. Contracting Neural-Newton Solver: Derive convergence guarantees for Neural Networks that can 
replace conventional Newton solvers [https://arxiv.org/pdf/2106.02543.pdf , L4DC 2022]

3. Interpretable Machine Learning: Direct association of the SHAP Values with the Power Transfer 
Distribution Factors (PTDFs) [ https://arxiv.org/pdf/2209.05793.pdf , submitted ]

4. Input Convex NNs for convex approximations of non-convex optimization problems                               
[ https://arxiv.org/pdf/2209.08645.pdf , submitted ]

5. Physics-Informed Neural Networks for Fast Dynamic Security Assessment 
[https://arxiv.org/pdf/2106.13638.pdf, code: https://github.com/jbesty/PINNs_transient_stability_analysis ]

6. Neural Network Training with by-design worst-case guarantees [soon on ArXiV]

and others…
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https://arxiv.org/pdf/2010.06344.pdf
https://arxiv.org/pdf/2106.02543.pdf
https://arxiv.org/pdf/2010.06344.pdf
https://arxiv.org/pdf/2010.06344.pdf
https://arxiv.org/pdf/2106.13638.pdf
https://github.com/jbesty/PINNs_transient_stability_analysis
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Interested in a postdoc or PhD? 

• Come work with us! 

• Wide range of topics around ML and beyond: 

– Trustworthy Machine Learning, Physics-Informed 
Neural Networks, capturing intractrable constraints 
with NNs, and more!

– Working with real datasets, and industry 
collaboration

– Opportunities for open academic research and/or 
toolbox development for practical applications

• Open positions online!

• Contact: spchatz@dtu.dk

66

mailto:spchatz@dtu.dk
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Thank you!

Spyros Chatzivasileiadis

Assoc. Prof, Head of Section

www.chatziva.com

spchatz@dtu.dk
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• A. Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for 
Power System Applications. Accepted at IEEE Trans. on Smartgrid. 2020.  
https://arxiv.org/pdf/1910.01624.pdf

• A. Venzke, G. Qu, S. Low, S. Chatzivasileiadis, Learning Optimal Power Flow: Worst-case Guarantees 
for Neural Networks.  Best Student Paper Award at IEEE SmartGridComm 2020.[ .pdf | slides |  
video ]

• G. S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural Networks for Power Systems. 
Presented at the Best Paper Session of IEEE PES GM 2020. https://arxiv.org/pdf/1911.03737.pdf

• R. Nellikkath, S. Chatzivasileiadis, Physics-Informed Neural Networks for AC Optimal Power Flow 
https://arxiv.org/abs/2110.02672 [ code ]

• J. Stiasny, G. S. Misyris, S. Chatzivasileiadis, Transient Stability Analysis with Physics-Informed Neural 
Networks. https://arxiv.org/abs/2106.13638 [ code ] 

• J. Stiasny, S. Chevalier, R. Nellikkath, B. Sævarsson, S. Chatzivasileiadis. Closing the Loop: A 
Framework for Trustworthy Machine Learning in Power Systems. Accepted to 2022 iREP Symposium 
- Bulk Power System Dynamics and Control - XI (iREP). Banff, Canada. 2022. [ paper | code ]

All publications available at: 

www.chatziva.com/publications.html

Some code available at:

www.chatziva.com/downloads.html

Article without any equations 

S. Chatzivasileiadis, A. Venzke, J. Stiasny and 
G. Misyris, "Machine Learning in Power 
Systems: Is It Time to Trust It?," in IEEE 
Power and Energy Magazine, vol. 20, no. 3, 
pp. 32-41, May-June 2022 [ .pdf ]

http://www.chatziva.com/
https://arxiv.org/pdf/1910.01624.pdf
https://arxiv.org/pdf/2006.11029.pdf
http://www.chatziva.com/presentations/Venzke_Poster_Presentation_LearningOPF_WorsCaseGuarantees.pdf
https://www.youtube.com/watch?v=C4low9NspXI
https://arxiv.org/pdf/1911.03737.pdf
https://arxiv.org/abs/2110.02672
https://github.com/RahulNellikkath/Physics-Informed-Neural-Networks-for-AC-Optimal-Power-Flow
https://arxiv.org/abs/2106.13638
https://github.com/jbesty
https://arxiv.org/abs/2203.07505
https://github.com/jbesty/irep_2022_closing_the_loop
http://www.chatziva.com/publications.html
http://www.chatziva.com/downloads.html
https://ieeexplore.ieee.org/document/9761145

	Machine Learning for Power Systems: Is it time to trust it? 
	Slide Number 2
	Slide Number 3
	Department of Wind and Energy Systems�Working for a sustainable future
	Electric Power Systems �PWR Section: 28+3 members; 20 nationalities
	PWR: Advanced Methods and Tools for Power System Security and Control
	This work would not have been possible without the hard work of several people! Many thanks to…
	Machine learning: Why shall we apply it in power systems? 
	This talk: Two Challenges and One Opportunity
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Closing the Loop: A Framework for Trustworthy Machine Learning in Power Systems
	Closing the Loop: Trustworthy ML for Power Systems
	Closing the Loop: Trustworthy ML for Power Systems
	Closing the Loop: Trustworthy ML for Power Systems
	Closing the Loop: Trustworthy ML for Power Systems
	Closing the Loop: Trustworthy ML for Power Systems
	Closing the Loop: Trustworthy ML for Power Systems
	Sampling beyond Statistics:�Separating Hyperplanes and Directed Walks
	Sampling beyond Statistics:�Separating Hyperplanes and Directed Walks
	Sampling beyond Statistics:�Efficient Database Generation
	Convex relaxations to discard infeasible regions
	Convex relaxations to discard infeasible regions
	Convex relaxations to discard infeasible regions
	Convex relaxations to discard infeasible regions
	Slide Number 30
	Results
	NN-Informed Sampling
	NN-Informed Sampling
	NN-Informed Sampling
	NN-Informed Sampling
	Sampling beyond statistics: �Better results with less data
	Sampling beyond statistics: �Better results with less data
	Slide Number 38
	Neural Networks: An advanced form of non-linear regression
	Physics Informed Neural Networks
	Physics-Informed Neural Networks for Power Systems
	Physics-Informed Neural Networks for Power Systems
	Physics-Informed Neural Networks for Power Systems
	Computation time: �Classical numerical solvers vs. Physics-Informed NNs
	Closing the Loop: Trustworthy ML for Power Systems
	Neural Network Verification�for classification NNs in Power Systems
	Neural Network Verification: HOW?
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Certify the output for a continuous range of inputs
	Certify the output for a continuous range of inputs
	�Provable Worst-case Guarantees
	Neural Networks for Optimal Power Flow
	Slide Number 56
	Slide Number 57
	Slide Number 58
	The opportunity�“AI for Optimization”
	The opportunity: 1-slide summary
	Slide Number 61
	Opportunity: Convert Verified Neural Network to an Optimization Problem 
	Opportunity: Convert Verified Neural Network to an Optimization Problem 
	Wrap-up
	�What did I not talk about�Exploring a wide range of research directions
	Interested in a postdoc or PhD? 
	Thank you!

