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* Background



Supervised Machine Learning

* Classification tasks
* Train a neural network to classify images as +1 or -1
* We will only consider binary classification here
 Example: +1: dog, -1: cat
* Example: medical images, +1: disease, -1: no disease
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Training the Network Needs Labeled Data

* Learning the function in a supervised framework needs a labeled
dataset

 Dataset: D = (x;, v;);x; € R, y; € {—1,+1}
* x; corresponds to an image and y; is its label

* Today’s talk: How do we get these labels?



Crowdsourcing

* One popular technique : Crowdsourcing

* Crowdsourcing example :

* We might want each medical image to be labeled by 10 doctors
* Then estimate the true label for that image from those (noisy) labels.
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Crowdsourcing Data

-

Worker 1

Worker 2 -1 -1 +1 +1 +1 +1 +1 -1
Worker 3 -1 -1 -1 +1 -1 -1 +1 +1
Worker 4 -1 +1 +1 -1 -1 +1 +1 -1

Example: Task: Image, Worker: Doctor

Images may be hard to classify even for doctors. So how do we infer the true labels?
Simplest and most natural scheme: Majority vote

In this case, that would yield -1, -1, +/-1, +1, -1, +1, +1, -1

Question: can we do better?



Dawid-Skene Model (Dawid and Skene, 1979)

* Suppose that each worker i correctly labels a task with probability p;
 Models the fact that some workers may be better at labeling tasks than others

* Suppose we know the p;s, what should we do?

* Weighted majority voting: if O;; is the label given by worker i to task j,
estimate the true label to be

sgn (Z WiOij>
i

* We should give higher weights to the labels of the better workers
* But what should the weights be? Assume %Zi p; > %



Maximum Likelihood Estimator

* |If p;s are known and the goal is maximum likelihood estimation, then
the weights are given by (Nitzan and Paroush,1982) :

w; = lo ( P )

* MLE finds the labels that maximize the probability of observing the
given dataset

* But that may not be the objective we are interested in



Objective
* We want as many correct labels as possible

* Minimize the fraction of incorrect labels :

d d
1 1 .
E(€cs) =E 52 lpizy; | = Ez IP)(yj ia 3’j)
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Optimality of NP-WMYV for

e Gao et al.(2016) prove that the best error rate that any algorithm can
achieve is given by the following error bound:

E(Ecs) = exp(—nl(p))

 I(p) can be thought of as the collective ability of the workers given by:

[(p) = —~%;log(2/p:(1 — py))

* NP-WMYV achieves this optimal error rate asymptotically (Bonald and
Combes, 2017)



But we don’t know p; ...

* All we have is the observation matrix (a.k.a. data matrix)

-

Worker 1
Worker 2 -1 -1 +1 +1 +1 +1 +1 -1
Worker 3 -1 -1 -1 +1 -1 -1 +1 +1

Worker 4 -1 +1 +1 -1 -1 +1 +1 -1



Some Algorithms for Crowdsourcing

One class of algorithms:
1. First, estimate the p;s from data

2. Then plug in those estimates of p;s to estimate true labels
* Bonald and Combes, 2017 (TE)
Dalvi et al., 2013 (Spectral estimation of p;s)
Zhang et al, 2014 (Spectral+EM)
Ma, Olshevsky, Saligrama and Szepesvari 2020 (Low-rank matrix estimation)
Karger, Oh and Shah, 2011 (Message passing)
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e Our Model and Solution



Our Model

-

Worker 1

Worker 2 -1 -1 +1 +1 +1 +1 +1 -1
Worker 3 -1 -1 -1 +1 -1 -1 +1 +1
Worker 4 -1 +1 +1 -1 -1 +1 +1 -1

* Recall that to do better than simple majority voting, we assumed worker i labeled a
task correctly w.p. p;
* But what if some tasks are harder to classify than others for the workers
* In medical images, the size of a nodule may make it hard to detect cancer
* So, we use an extended Dawid-Skene model



An Extended D-S Model

* Assume there are two types of tasks (hard and easy)
* For simplicity, we will assume there are only two task types.

* Worker i labels a hard task correctly with probability p;; and an easy
task correctly with probability p,;

1 1 1 1
* Assume ;Zipei >~ and ;Ziphi >~

* The same task may be hard for someone and easy for someone else



What do hard and easy mean?

* Reliability of a worker for an easy task is defined asr,; = (2p,; — 1)
* Let 1, be the reliability vector for easy tasks and 1, be for hard tasks

e Assumption: |7, || > |13
* “On average”, across workers, we assume some tasks are harder than others

* Given this model, as before, we will assume more information and try
to solve the problem. Then, we will solve it in a data-driven fashion



Data Matrix Plus Side Information

* As before, let’s first consider the case where we assume more information than we
have, obtain the solution for that, and then consider the real problem

_

Worker 1

Worker 2 1 -1 +1 +1 +1 +1 +1 -1

Worker 3 -1 -1 -1 +1 -1 -1 +1 +1

Worker 4 1 +1 +1 -1 -1 +1 +1 -1
H E H E E E E H

* Suppose we know which tasks are easy and which tasks are hard

 We would apply a single-type DS algorithm to the easy tasks and a single-type DS
algorithm for the hard tasks

 But we don’t know which tasks are easy and which are hard, what do we do?



Spectral Clustering

* Let O be the observation matrix

* It is easy to show that E(O”0) has rank 2 and the principal eigenvector has
a special structure (modulo sign determined by the labels) with v, > v,




The Algorithm for Hard-Easy Model

» Separation step : Cluster the tasks by type as follows:
1. Get the principal eigen-vector : v (%OTO)
2. Estimate the threshold for clustering : i = %Zj v |

e, if |vj| =p

3. Clustering: type; = ol
, else

 Label Estimation:
1. Separate the observation matrix by estimated types
2. Use any standard single-type algorithm for each type separately



The Algorithm for Hard-Easy Model (example)

* A simple example: Two workers, Four tasks

e Suppose the observation matrix given to us is

+1,+1, -1, +1]

0= [+1,—1,—1,—1



The Algorithm for Hard-Easy Model (example)

+1,+1,—-1,+1

0= l+1,—1,—1,—1

Apply TE+WMV

Apply TE+WMV

+1,+0,—1, +0]

1
Lot = [YO+1+0,+1 v(—OTO) — [0.71,0.00,—0.71,0.00]7
2 —-1,4+0,4+1,4+0 n
+0,+1,4+0,+1]
— +1,—-1
e — )
0% = [+1, 1
Easy set = {1,3}; Cluster the entries
Hard set = {2,4} of |v|
— +1,+1
h _ )
0" = l—1, 1



Theorem 1

Error rate for our algorithm:

* Let k; be the type of task j

1 -
P (ZZ I(kj * kj) = 5) < dexp(—nyK (1, 7,)0)
J

* For the tasks whose types are estimated correctly,

P(9() # yi|k() = k() < exp(—n(1 — ¥)I(r)(1 — 0(1)))



Take-Away Messages

* We need the Clustering error, i.e., task type estimation error, to be
small
Te

I'n

* The more different the norms are or the more orthogonal the vectors
are, the better it is for clustering



Take-Away Messages

* For the tasks whose types are estimated correctly,

P(9() # yj|k() = k() < exp(—n(1 — ¥)I(r)(1 — 0(1)))

* Each task type’s label error is limited by the ability of workers to
correctly label this type of task



Take-Away Messages
* For the tasks whose types are estimated correctly,
P(y() # yj|k() = k(D) < exp(—n(L — ) (1) (L — o(1)))

* Each task type’s label error is limited by the ability of workers to
correctly label this type of task

* Next, we will see how this is better than an algorithm in which we
don’t try to separate the task types



What if we use a single weight for each user?

e OQur algorithm separates the task types and uses weighted majority
voting for each type

* What if we do not separate the tasks and use a single weighted
majority vote?

* Consider the following example:

Task 1 (easy) |Task 2 (hard) | Task 3 (easy) |Task 4 (hard)




What if we use a single weight for each user?

Task 1 (easy) |Task 2 (hard) | Task 3 (easy) |Task 4 (hard)

* If we use a single weight across both task types, the following
situation occurs:
 More weight to worker 1, the performance will not be good on easy tasks
* More weight to worker 2, the performance will not be good in hard tasks
* This is strictly worse than using optimal weights for each type separately



Performance of Type-Agnostic Algorithms

Theorem 2
For plug-in single-type algorithmes:

E(Ecs) 2 exp (—nminp(w’,n,)(1 +0(1)) )

where, H}{in o(w*, 1, ) acts as the average ability of the crowd given by

1 1
ow, ) = — rtn>1(r)1nz log( exp(tw;) (1 — 1) +5 exp( tw;)(1 + rkl))

w* = arg max mkln p(w, 1)
w



Parsing the Theorem

* Recall the optimal error rate possible for any type k is given by the
exponent of I(p) = —;Z log(Z\/pi(l — pi))

* We can show that the optimal error rate for an easy task is smaller
than the hard ones, i.e, I(p,) > I(py)

* We can also show that /(p,) > I(p;,) = rrllcin o(w*, 1)

* This implies if we use a single-type DS-based algorithm for Hard-Easy model,
the labeling error rate is even worse than exp(—nl (py)) which is the rate we
have if we have only hard tasks



Proof Sketch of Theorem 2

* We are using weighted majority voting with weight w; for worker i
* Notice we express the error probability in labeling as

P(y; # y;) = P(Z, w;G;; > 0)
(
1, with probability = (1 — 1y ;)
where Gjj; = 1 : ]

—1,with probability % (1+ Tkji)
\

* Next use standard large deviation lower-bound technique (Cramer-
Chernoff theorem) to bound this expression



Outline

* Experiments



Simulations : Transition from DS to HE

As we can see in the figure, as the angle between 7, and 13, increases,
our algorithm tends to perform significantly better than the DS-based

algorithms

Blue : our algorithm
Orange: DS based algorithm(TE+NP-WMV)

Label prediction accuracy

0.34 0.36 0.38 0.40 0.42 0.44

Angle between 7, and 1y,



Simulations: Performance Gain on error rate

* We compared the performance of different single-type crowdsourcing
algorithms with and without separation for different datasets

* The algorithms used for comparisons are :
1. Majority Voting (MV)
2. Ratio of Eigen-vectors (ER) (Dalvi et al. , 2013)
3. Triangular Estimation (TE) (Bonald and Combes, 2017)
4. Projected Gradient Descent (PGD) (Ma et al., 2022)



Simulations: Performance Gain on error rate

DATASET MV ER TE PGD

JSRT-2-U  5.65 565 4.74 5.06
JSRT-2-S 5.65 439 3.16 3.8l e Dataset : The radiography dataset to identify

GAIN 0.00 1.26 .58 1.25 pneumonia reported in Makhnevich et al., 2019
JSRT-6-U 10.30 10.30 9.96 9.72 . 20 workers and 200 images
JSRT-6-S 10.30 10.02 9.84 9.76 &

GAIN 0.00 0.28 0.12 -0.04




Simulations: Performance Gain on error rate

DATASET MV ER TE PGD
BIRD-U 24.07 28.70 17.59 25.00
BIRD-S 24.07 11.11 1296 19.44
GAIN 0.00 16.59 4.63 5.56
DoG-U 23.28 23.32 35.38 20.06
DoG-S 23.28 7.11 14.40 21.72
GAIN 0 16.21 20.98 1.66

* Datasets:
1. Blue-Bird(Welinder et al., 2010)
* 39 workers, 108 tasks
2. Dog(Deng et al., 2009)
78 workers, 807 tasks
* 4 classes converted into two groups
to perform binary classification



Simulations: Performance Gain on error rate

* To compare our algorithm with DS-based algorithms, we used the radiography dataset
to identify pneumonia reported in Makhnevich et al., 2019

* For small values of n, TE performs better than our algorithm and for
larger n, our algorithm is better than TE (transition at n around 20)

0.35

Algorithm
— TE

0.30 —— TE-Split
S 025
S 020 Blue - TE: DS-based algorithm
‘gms — TE-split: our algorithm
% 0.10

0.05

0.00 '

0 20 40 60 80 100

Number of workers

Pneumonia experiments : A comparison of TE with and without separation.



(Intuition Behind Proof of) Theorem 1

Error rate for our algorithm:
* Let k; be the type of task j

1 -
P (ZZ I(kj * kj) = 5) < dexp(—nyK (1, 7,)0)
J

* For the tasks whose types are estimated correctly,

P(9() # yi|k() = k() < exp(—n(1 — ¥)I(r)(1 — 0(1)))



Proof Sketch

* First, we characterize the effect of the deviation from the expected
case on spectral clustering

e Write 070 as

1 1 |
—070 = —E(070) + noise
n n



Proof Sketch

1 . o .
* We know that EIE(OTO) is a rank-2 matrix with the special property
of its principal eigenvector v:
* Each element of ‘ ( ]E(OTO))‘ is either v, or v;, with v, > vj,

o If jt" task is easy, ji" element of ‘ ( IE(OTO))‘ is V,; else, it is vy

* Using Davis-Kahan theorem, we can now bound the gap between the
eigenvectors of the two matrices : %OTO and %IE(OTO)



Proof Sketch

1 1 |
—070 =—E(0"0) + noise
n n

* Using Davis-Kahan Theorem on Matrix Perturbation,

K H%(OTO - IE(OTO))”

Hv (%OTO) -V (%IE(OTO))H = A (%IE(OTO)) — A (% IE(OTO))

* 11 and A, are the two largest eigenvalues of%[E(OTO)



Proof Sketch

1 1 |
—070 =—E(0"0) + noise
n n

* Next, we can use Matrix Concentration Inequality to show that

H%(OTO —E(0"0)) ” — 0 exponentially fast in n



Proof Sketch

* The principal eigenvector ofz 070 is exponentially close to its expectation

* From this, we can derive a tail bound on the clustering error:
1 AN
P (Ez I(kj * kj) = 5) < dexp(—nyK (ry,1.)0
J

* Clustering performance is good if the gap |v, — v, | is large
e If |v, — vy | is large, K (1, 13,) is also large

* It turns out that K (1, 7.) is an increasing function of the expression:

ITell?=llrnll>

Te Th
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Conclusions

* We extended the traditional DS model to be more appropriate for some
crowdsourcing applications

* Allowed more than one type of task

* Proposed a spectral clustering algorithm that clusters tasks by difficulty
with an improved performance guarantee

e Separate types before label estimation
* Provably better than without separation when there are “many” workers

* What’s next? A data-driven algorithm to determine whether we should use
separation or stick to a single-type DS-based algorithm for a given data
matrix



