
An Algorithm for Crowdsourcing
with Hard and Easy Tasks

R. Srikant
University of Illinois at Urbana-Champaign

Coauthors

Saptarshi MandalSeo Taek Kong Dimitrios Katselis

Outline

• Background

• Our Model and Solution

• Experiments

• Conclusions

Outline

• Background

• Our Model and Solution

• Experiments

• Conclusions

Supervised Machine Learning
• Classification tasks
• Train a neural network to classify images as +1 or -1
• We will only consider binary classification here
• Example: +1: dog, -1: cat
• Example: medical images, +1: disease, -1: no disease

Image

disease

No disease

or

Neural Network

Training the Network Needs Labeled Data

• Learning the function in a supervised framework needs a labeled
dataset

• Dataset : 𝐷 = 𝑥! , 𝑦! "
; 𝑥! ∈ ℝ$, 𝑦! ∈ −1,+1

• 𝑥! corresponds to an image and 𝑦! is its label

• Today’s talk: How do we get these labels?

Crowdsourcing

• One popular technique : Crowdsourcing
• Crowdsourcing example :

• We might want each medical image to be labeled by 10 doctors
• Then estimate the true label for that image from those (noisy) labels.

Crowdsourcing
Platform –

Aggregation and
EstimationTaskmaster

Crowd

Task
example: medical

images to label

Solution:
estimation of

true labels

Distribute images
to each

participant

Collecting all
responses;

example: labelsCrowdsourcing Mechanism

Crowdsourcing Data

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

Worker 1 +1 -1 -1 +1 -1 +1 -1 -1

Worker 2 -1 -1 +1 +1 +1 +1 +1 -1

Worker 3 -1 -1 -1 +1 -1 -1 +1 +1

Worker 4 -1 +1 +1 -1 -1 +1 +1 -1

• Example: Task: Image, Worker: Doctor
• Images may be hard to classify even for doctors. So how do we infer the true labels?
• Simplest and most natural scheme: Majority vote
• In this case, that would yield -1, -1, +/-1, +1, -1, +1, +1, -1
• Question: can we do better?

Dawid-Skene Model (Dawid and Skene, 1979)

• Suppose that each worker 𝑖 correctly labels a task with probability 𝑝!
• Models the fact that some workers may be better at labeling tasks than others

• Suppose we know the 𝑝!s, what should we do?
• Weighted majority voting: if 𝑂!" is the label given by worker 𝑖 to task 𝑗,

estimate the true label to be

sgn)
!

𝑤!𝑂!"

• We should give higher weights to the labels of the better workers
• But what should the weights be? Assume !

"
∑# 𝑝# >

!
$

Maximum Likelihood Estimator

• If 𝑝!s are known and the goal is maximum likelihood estimation, then
the weights are given by (Nitzan and Paroush,1982) :

𝑤! = log
𝑝!

1 − 𝑝!

• MLE finds the labels that maximize the probability of observing the
given dataset

• But that may not be the objective we are interested in

Objective

• We want as many correct labels as possible

• Minimize the fraction of incorrect labels :

𝔼 ℰ%& = 𝔼
1
𝑑
4
'("

$

𝕀)*!+*! =
1
𝑑
4
'("

$

ℙ 7𝑦' ≠ 𝑦'

Optimality of NP-WMV for

• Gao et al.(2016) prove that the best error rate that any algorithm can
achieve is given by the following error bound:

𝔼 ℰ%& ≥ exp(−𝑛𝐼(𝑝))

• 𝐼 𝑝 can be thought of as the collective ability of the workers given by:
𝐼 𝑝 = − !

"
∑# log 2 𝑝#(1 − 𝑝#)

• NP-WMV achieves this optimal error rate asymptotically (Bonald and
Combes, 2017)

But we don’t know 𝑝! …

• All we have is the observation matrix (a.k.a. data matrix)

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

Worker 1 +1 -1 -1 +1 -1 +1 -1 -1

Worker 2 -1 -1 +1 +1 +1 +1 +1 -1

Worker 3 -1 -1 -1 +1 -1 -1 +1 +1

Worker 4 -1 +1 +1 -1 -1 +1 +1 -1

Some Algorithms for Crowdsourcing

One class of algorithms:
1. First, estimate the 𝑝!s from data
2. Then plug in those estimates of 𝑝!s to estimate true labels
• Bonald and Combes, 2017 (TE)
• Dalvi et al., 2013 (Spectral estimation of 𝑝#s)
• Zhang et al, 2014 (Spectral+EM)
• Ma, Olshevsky, Saligrama and Szepesvari 2020 (Low-rank matrix estimation)
• Karger, Oh and Shah, 2011 (Message passing)
• …

Outline

• Background

• Our Model and Solution

• Experiments

• Conclusions

Our Model

• Recall that to do better than simple majority voting, we assumed worker 𝑖 labeled a
task correctly w.p. 𝑝#

• But what if some tasks are harder to classify than others for the workers
• In medical images, the size of a nodule may make it hard to detect cancer

• So, we use an extended Dawid-Skene model

An Extended D-S Model

• Assume there are two types of tasks (hard and easy)
• For simplicity, we will assume there are only two task types.

• Worker 𝑖 labels a hard task correctly with probability 𝑝,! and an easy
task correctly with probability 𝑝-!
• Assume !"∑# 𝑝$# >

!
% and !"∑# 𝑝&# >

!
%

• The same task may be hard for someone and easy for someone else

What do hard and easy mean?

• Reliability of a worker for an easy task is defined as 𝑟-! = 2𝑝-! − 1
• Let 𝑟$ be the reliability vector for easy tasks and 𝑟& be for hard tasks

• Assumption: 𝑟- > ‖𝑟,‖
• “On average”, across workers, we assume some tasks are harder than others

• Given this model, as before, we will assume more information and try
to solve the problem. Then, we will solve it in a data-driven fashion

Data Matrix Plus Side Information
• As before, let’s first consider the case where we assume more information than we

have, obtain the solution for that, and then consider the real problem

• Suppose we know which tasks are easy and which tasks are hard
• We would apply a single-type DS algorithm to the easy tasks and a single-type DS

algorithm for the hard tasks
• But we don’t know which tasks are easy and which are hard, what do we do?

H HE E EEE H

Spectral Clustering

• Let 𝑂 be the observation matrix
• It is easy to show that 𝐸(𝑂#𝑂) has rank 2 and the principal eigenvector has

a special structure (modulo sign determined by the labels) with 𝑣$ > 𝑣%
𝑣%
𝑣$
𝑣%
𝑣$
𝑣$
𝑣$
𝑣$
𝑣%

The Algorithm for Hard-Easy Model

• Separation step : Cluster the tasks by type as follows:
1. Get the principal eigen-vector : 𝑣 !

"𝑂
'𝑂

2. Estimate the threshold for clustering : �̂� = !
(
∑) |𝑣) |

3. Clustering: 𝑡𝑦𝑝𝑒) = 8𝑒, 𝑖𝑓 𝑣) ≥ �̂�
ℎ, 𝑒𝑙𝑠𝑒

• Label Estimation:
1. Separate the observation matrix by estimated types
2. Use any standard single-type algorithm for each type separately

The Algorithm for Hard-Easy Model (example)

• A simple example: Two workers, Four tasks

• Suppose the observation matrix given to us is

𝑂 = +1,+1,−1,+1
+1,−1,−1,−1

The Algorithm for Hard-Easy Model (example)

𝑂 = +1,+1,−1, +1
+1,−1, −1, −1

1
2
𝑂!𝑂 =

+1,+0,−1, +0
+0,+1, +0, +1
−1,+0, +1, +0
+0,+1, +0, +1

𝑣
1
𝑛 𝑂

!𝑂 = 0.71, 0.00, −0.71, 0.00 !

Cluster the entries
of |𝑣|

Easy set = {1,3} ;
Hard set = {2,4}

7𝑂" = +1,−1
+1,−1Apply TE+WMV

7𝑂# = +1,+1
−1,−1Apply TE+WMV

Theorem 1

Error rate for our algorithm:
• Let 𝑘' be the type of task 𝑗

𝑃
1
𝑑
A
)

𝐼 𝑘) ≠ D𝑘) ≥ 𝛿 ≤ 𝑑exp(−𝑛𝛾𝐾(𝑟&, 𝑟$)𝛿)

• For the tasks whose types are estimated correctly,

ℙ N𝑦 𝑗 ≠ 𝑦) P𝑘 𝑗 = 𝑘 𝑗 ≤ exp(−𝑛(1 − 𝛾)𝐼(𝑟8)(1 − 𝑜(1)))

Take-Away Messages

• We need the Clustering error, i.e., task type estimation error, to be
small

• The more different the norms are or the more orthogonal the vectors
are, the better it is for clustering

𝑟0

𝑟1

Take-Away Messages

• For the tasks whose types are estimated correctly,

ℙ N𝑦 𝑗 ≠ 𝑦) P𝑘 𝑗 = 𝑘 𝑗 ≤ exp(−𝑛(1 − 𝛾)𝐼(𝑟8)(1 − 𝑜(1)))

• Each task type’s label error is limited by the ability of workers to
correctly label this type of task

Take-Away Messages

• For the tasks whose types are estimated correctly,

ℙ N𝑦 𝑗 ≠ 𝑦) P𝑘 𝑗 = 𝑘 𝑗 ≤ exp(−𝑛(1 − 𝛾)𝐼(𝑟8)(1 − 𝑜(1)))

• Each task type’s label error is limited by the ability of workers to
correctly label this type of task

• Next, we will see how this is better than an algorithm in which we
don’t try to separate the task types

What if we use a single weight for each user?

• Our algorithm separates the task types and uses weighted majority
voting for each type
• What if we do not separate the tasks and use a single weighted

majority vote?
• Consider the following example:

𝒑𝒊𝒋 𝑻𝒂𝒔𝒌 𝟏 (𝒆𝒂𝒔𝒚) 𝑻𝒂𝒔𝒌 𝟐 (𝒉𝒂𝒓𝒅) 𝑻𝒂𝒔𝒌 𝟑 (𝒆𝒂𝒔𝒚) 𝑻𝒂𝒔𝒌 𝟒 (𝒉𝒂𝒓𝒅)

𝑊𝑜𝑟𝑘𝑒𝑟 1 0.5 0.8 0.5 0.8

𝑊𝑜𝑟𝑘𝑒𝑟 2 0.9 0.4 0.9 0.4

What if we use a single weight for each user?

• If we use a single weight across both task types, the following
situation occurs:
• More weight to worker 1, the performance will not be good on easy tasks
• More weight to worker 2, the performance will not be good in hard tasks
• This is strictly worse than using optimal weights for each type separately

Performance of Type-Agnostic Algorithms

Theorem 2
For plug-in single-type algorithms:

𝔼 ℰ%& ≥ 𝑒𝑥𝑝 −𝑛min
.
𝜑 𝑤∗, 𝑟. (1 + 𝑜(1))

where,min
.

𝜑 𝑤∗, 𝑟. acts as the average ability of the crowd given by

𝜑 𝑤, 𝑟8 = −min
IJK

1
𝑛
A
#L!

"

log
1
2
exp 𝑡𝑤# 1 − 𝑟8# +

1
2
exp(−𝑡𝑤#)(1 + 𝑟8#)

𝑤∗ = 𝑎𝑟𝑔max
N

min
8
𝜑(𝑤, 𝑟8)

Parsing the Theorem

• Recall the optimal error rate possible for any type 𝑘 is given by the
exponent of 𝐼 𝑝 = − "

#
∑ log 2 𝑝! 1 − 𝑝!

• We can show that the optimal error rate for an easy task is smaller
than the hard ones, i.e, 𝐼 𝑝- > 𝐼(𝑝,)

• We can also show that 𝐼 𝑝- > 𝐼 𝑝, ≥ min
.

𝜑 𝑤∗, 𝑟.
• This implies if we use a single-type DS-based algorithm for Hard-Easy model,

the labeling error rate is even worse than exp(−𝑛𝐼(𝑝&)) which is the rate we
have if we have only hard tasks

Proof Sketch of Theorem 2

• We are using weighted majority voting with weight 𝑤! for worker 𝑖
• Notice we express the error probability in labeling as

ℙ 7𝑦' ≠ 𝑦' = ℙ ∑!("# 𝑤!𝐺!' > 0

where GOP =]
1, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 !% (1 − 𝑟8!#)

−1 ,𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 !% (1 + 𝑟8!#)

• Next use standard large deviation lower-bound technique (Cramer-
Chernoff theorem) to bound this expression

Outline

• Background

• Our Model and Solution

• Experiments

• Conclusions

Simulations : Transition from DS to HE

As we can see in the figure, as the angle between 𝑟- and 𝑟, increases,
our algorithm tends to perform significantly better than the DS-based
algorithms

Blue : our algorithm
Orange: DS based algorithm(TE+NP-WMV)

La
be

l p
re

di
ct

io
n

ac
cu

ra
cy

Angle between 𝑟" and 𝑟#

Simulations: Performance Gain on error rate

• We compared the performance of different single-type crowdsourcing
algorithms with and without separation for different datasets

• The algorithms used for comparisons are :
1. Majority Voting (MV)
2. Ratio of Eigen-vectors (ER) (Dalvi et al. , 2013)
3. Triangular Estimation (TE) (Bonald and Combes, 2017)
4. Projected Gradient Descent (PGD) (Ma et al., 2022)

Simulations: Performance Gain on error rate

• Dataset : The radiography dataset to identify
pneumonia reported in Makhnevich et al., 2019
• 20 workers and 200 images

Simulations: Performance Gain on error rate

• Datasets:
1. Blue-Bird(Welinder et al., 2010)

• 39 workers, 108 tasks
2. Dog(Deng et al., 2009)

• 78 workers, 807 tasks
• 4 classes converted into two groups

to perform binary classification

Simulations: Performance Gain on error rate

Pneumonia experiments : A comparison of TE with and without separation.

• To compare our algorithm with DS-based algorithms, we used the radiography dataset
to identify pneumonia reported in Makhnevich et al., 2019

• For small values of 𝑛, TE performs better than our algorithm and for
larger 𝑛, our algorithm is better than TE (transition at 𝑛 around 20)

Blue - TE: DS-based algorithm
Orange – TE-split: our algorithm

(Intuition Behind Proof of) Theorem 1

Error rate for our algorithm:
• Let 𝑘' be the type of task 𝑗

𝑃
1
𝑑
A
)

𝐼 𝑘) ≠ D𝑘) ≥ 𝛿 ≤ 𝑑exp(−𝑛𝛾𝐾(𝑟&, 𝑟$)𝛿)

• For the tasks whose types are estimated correctly,

ℙ N𝑦 𝑗 ≠ 𝑦) P𝑘 𝑗 = 𝑘 𝑗 ≤ exp(−𝑛(1 − 𝛾)𝐼(𝑟8)(1 − 𝑜(1)))

Proof Sketch

• First, we characterize the effect of the deviation from the expected
case on spectral clustering

• Write 𝑂1𝑂 as

1
𝑛
𝑂1𝑂 =

1
𝑛
𝔼(𝑂2𝑂) + 𝑛𝑜𝑖𝑠𝑒

Proof Sketch

• We know that "
#
𝔼 𝑂2𝑂 is a rank-2 matrix with the special property

of its principal eigenvector 𝑣:
• Each element of 𝑣 !

"
𝔼(𝑂R𝑂) is either 𝑣$ or 𝑣& with 𝑣$ > 𝑣&

• If 𝑗I& task is easy, 𝑗I& element of 𝑣 !
"𝔼(𝑂

R𝑂) is 𝑣$; else, it is 𝑣&

• Using Davis-Kahan theorem, we can now bound the gap between the
eigenvectors of the two matrices : "

#
𝑂1𝑂 and "

#
𝔼(𝑂2𝑂)

Proof Sketch

1
𝑛
𝑂1𝑂 =

1
𝑛
𝔼(𝑂2𝑂) + 𝑛𝑜𝑖𝑠𝑒

• Using Davis-Kahan Theorem on Matrix Perturbation,

𝑣
1
𝑛
𝑂'𝑂 − 𝑣

1
𝑛
𝔼(𝑂R𝑂) ≤

𝐾 1
𝑛 𝑂'𝑂 − 𝔼 𝑂R𝑂

𝜆!
1
𝑛 𝔼(𝑂

R𝑂) − 𝜆%
1
𝑛 𝔼(𝑂

R𝑂)

• 𝜆! and 𝜆% are the two largest eigenvalues of !"𝔼(𝑂
R𝑂)

Proof Sketch

1
𝑛
𝑂1𝑂 =

1
𝑛
𝔼(𝑂2𝑂) + 𝑛𝑜𝑖𝑠𝑒

• Next, we can use Matrix Concentration Inequality to show that

"
#
𝑂1𝑂 − 𝔼(𝑂2𝑂) → 0 exponentially fast in 𝑛

Proof Sketch

• The principal eigenvector of &
'
𝑂(𝑂 is exponentially close to its expectation

• From this, we can derive a tail bound on the clustering error:

𝑃
1
𝑑)

"

𝐼 𝑘" ≠ 8𝑘" ≥ 𝛿 ≤ 𝑑exp(−𝑛𝛾𝐾(𝑟%, 𝑟$)𝛿

• Clustering performance is good if the gap |𝑣$ − 𝑣%| is large
• If |𝑣% − 𝑣&| is large, 𝐾(𝑟& , 𝑟&) is also large

• It turns out that 𝐾(𝑟%, 𝑟$) is an increasing function of the expression:
)' (*)) (

)'*))

Outline

• Background

• Our Model and Solution

• Experiments

• Conclusions

Conclusions

• We extended the traditional DS model to be more appropriate for some
crowdsourcing applications
• Allowed more than one type of task

• Proposed a spectral clustering algorithm that clusters tasks by difficulty
with an improved performance guarantee
• Separate types before label estimation
• Provably better than without separation when there are “many” workers

• What’s next? A data-driven algorithm to determine whether we should use
separation or stick to a single-type DS-based algorithm for a given data
matrix

