Recent Developments on (Practical) Optimization Methods for Convex and Nonconvex Optimization

GE O R G I A T ECH

N O V E M B E R 1 0 , 2022

Stanford University

Yinyu Ye Stanford University and CUHKSZ (Sabbatical Leave) (Currently Visiting IEDA HKUST)

Today's Talk

• **New developments of ADMM-based interior point (ABIP) Method**

-
- **Optimal Diagonal Preconditioner and HDSDP**
- **A Dimension Reduced Trust-Region Method**
- **A Homogeneous Second-Order Descent Method**

ABIP(Lin, Ma, Zhang and Y, 2021)

• An ADMM (Glowinski and Marroco 75, He et al. 12, Monteiro and Svaiter 13) based interior point method solver for LP problems

$$
\begin{array}{ll}\n\text{min} & \mathbf{c}^{\top} \mathbf{x} \\
\text{s.t.} & A\mathbf{x} = \mathbf{b} \\
\mathbf{x} \ge 0\n\end{array} \tag{D}
$$

• Consider homogeneous and self-dual (HSD) LP here!

$$
\begin{aligned} \min \quad & \beta(n+1)\theta+\mathbf{1}(\mathbf{r}=0)+\mathbf{1}(\xi=-n-1) \\ \text{s.t.} \quad & Q\mathbf{u}=\mathbf{v}, \\ & \mathbf{y} \text{ free}, \, \mathbf{x}\geq 0, \tau\geq 0, \theta \text{ free}, \, \mathbf{s}\geq 0, \kappa\geq 0 \end{aligned}
$$

where

$$
Q = \begin{bmatrix} 0 & A & -\mathbf{b} & \overline{\mathbf{b}} \\ -A^{\top} & 0 & \mathbf{c} & -\overline{\mathbf{c}} \\ \mathbf{b}^{\top} & -\mathbf{c}^{\top} & 0 & \overline{\mathbf{z}} \\ -\overline{\mathbf{b}}^{\top} & \overline{\mathbf{c}}^{\top} & -\overline{\mathbf{z}} & 0 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} \mathbf{y} \\ \mathbf{x} \\ \tau \\ \theta \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} \mathbf{r} \\ \mathbf{s} \\ \kappa \\ \xi \end{bmatrix}, \quad \overline{\mathbf{b}} = \mathbf{b} - A\mathbf{e}, \quad \overline{\mathbf{c}} = \mathbf{c} - \mathbf{e}, \quad \overline{\mathbf{z}} = \mathbf{c}^{\top}\mathbf{e} + 1
$$

$$
\begin{aligned}\n\max & \quad \mathbf{b}^{\top} \mathbf{y} \\
\text{s.t.} & \quad A^{\top} \mathbf{y} + \mathbf{s} = \mathbf{c} \\
& \quad \mathbf{s} \ge 0\n\end{aligned}
$$

$$
\cdot \geq 0, \theta \text{ free, } \mathbf{s} \geq 0, \kappa \geq 0
$$

ABIP – Subproblem

- Introduce log-barrier function for HSD LP
	- min $B(\mathbf{u}, \mathbf{v}, \mu)$
	- s.t. $Q\mathbf{u} = \mathbf{v}$

where $B(\mathbf{u}, \mathbf{v}, \mu)$ barrier function

- cost is too expensive when problem is large!
- Now we apply ADMM to solve it inexactly
	- $\min \quad \mathbf{1}(Q)$
	- s.t. $(\tilde{\mathbf{u}}, \tilde{\mathbf{v}})$

• Traditional IPM, one uses Newton's method to solve the KKT system of the above problem, the

$$
\begin{aligned} &\tilde{\mathbf{u}} = \tilde{\mathbf{v}}) + B\big(\mathbf{u}, \mathbf{v}, \mu^k\big) \\ &\tilde{\mathbf{v}}) = (\mathbf{u}, \mathbf{v}) \end{aligned}
$$

$$
(\mathbf{y},\mu^k)-\langle\beta(\mathbf{p},\mathbf{q}),(\tilde{\mathbf{u}},\tilde{\mathbf{v}})-(\mathbf{u},\mathbf{v})\rangle+\frac{\beta}{2}\|(\tilde{\mathbf{u}},\tilde{\mathbf{v}})-(\mathbf{u},\mathbf{v})\|^2
$$

The augmented Lagrangian function: only need to factorize a matrix once or find good diagonal preconditioners once

 $\mathcal{L}_{\beta}(\tilde{\mathbf{u}},\tilde{\mathbf{v}},\mathbf{u},\mathbf{v},\mu^{k},\mathbf{p},\mathbf{q}):=\mathbf{1}(Q\tilde{\mathbf{u}}=\tilde{\mathbf{v}})+B(\mathbf{u},\mathbf{v})$

ADMM Based Interior-Point (ABIP)+ Method (Deng et al. 2022)

• Different strategies/parameters may be significantly different among problems being solved

-
- An integration strategy based on decision tree is integrated into ABIP

…

• **A simple feature-to-strategy mapping is derived from a machine learning model**

• **For generalization limit the number of strategies (2 or 3 types)**

ABIP – Restart Strategy I

Instance SC50B (only plot the first two dimension,)

• ABIP tends to induce a spiral trajectory

ABIP – Restart Strategy II

Instance SC50B (only plot the first two dimension, after restart)

• After restart, ABIP moves more aggressively and converges faster (reduce almost 70% ADMM

iterations) !

ABIP – Netlib

- Selected 105 Netlib instances
- $\epsilon = 10^{-6}$, use the direct method, 10⁶ max ADMM iterations

- Hybrid μ : If $\mu > \epsilon$ use the aggressive strategy, otherwise use another strategy
- ABIP+ decreases both # IPM iterations and # ADMM iterations significantly

ABIP – MIP2017

- 240 MIP2017 instances
- $\epsilon = 10^{-4}$, presolved by PaPILO, use the direct method, 10⁶ max ADMM iterations

Method **COPT** $PDLP(Julia)$ ABIP ABIP3+ Integratio

• PDLP (Lu et al. 2021) is a practical first-order method (i.e., the primal-dual hybrid gradient (PDHG) method) for linear programming, and it enhences PDHG by a few implementation

- tricks.
-

• SGM stands for Shifted Geometric Mean, a standard measurement of solvers' performance

ABIP – PageRank

- Second order methods in commercial solver fail in most of these instances.
- $\epsilon = 10^{-4}$, use the indirect method, 5000 max ADMM iterations.

Method $PDLP(Julia)$ $ABIP3+$

• 117 instances, generated from sparse matrix datasets: DIMACS10, Gleich, Newman and SNAP.

• Examples:

- Generated by Google code
-

Staircase matrix instance (# nodes = 10)

• In this case, ABIP+ is significantly faster than PDLP!

• When # nodes equals to # edges, the generated instance is a staircase matrix. For example,

ABIP – PageRank

ABIP iteration remains valid for general conic linear program

• ABIP-subproblem requires to solve a proximal mapping x^+ = argmin $\lambda F(x) + \frac{1}{x}$ functions $F(x)$ in $B(u, v, \mu^k)$

2 $|x - c||^2$ with respect to the log-barrier

 $T_{IPM} = O\left(\log\left(\frac{1}{\varepsilon}\right)\right)$ $\mathcal{E}_{\mathcal{C}}$ $, T_{ADMM} = O($ 1 \mathcal{E}_{0}^{2} $\log\left(\frac{1}{2}\right)$ $\mathcal{E}_{\mathcal{L}}$)

$\min c^T x$ s.t. $Ax = b$ $x \in \mathcal{K}$

• The total IPM and ADMM iteration complexities of ABIP for conic linear program are respectively:

Second-order cone

• $F(x) = -\log(t^2 - ||x||^2)$, $x = (t; x)$ \bullet Can be solved by finding the root of

Positive semidefinite cone

 $\log(d_{\alpha}t_{\alpha})$ \bullet $F(x) = -\log(\det x)$

• Equivalent to solve $-\lambda x^{-1} - c + x = 0$

• Can be solved by eigen decomposition

ABIP – Extension to Conice Linear Program

ABIP – Numerical results for large sparse SDPs (Joachim Dahl et al . 2022

- Large sparse SDP problems from Mittelmann's library
- Relative tolerance $\epsilon = 10^{-6}$ used for stopping criteria

(Performance on an AMD Ryzen 9 5900X Linux computer)

- **a general purpose LP solver**
- **using ADMM to solve the subproblem**
- **developed with heuristics and intuitions from various strategies**
- **equipped with several new computational tricks**
- **Smart dual updates?**

ABIP is

Today's Talk

• **New developments of ADMM-based interior point (ABIP) Method**

-
- **Optimal Diagonal Preconditioner and HDSDP**
- **A Dimension Reduced Trust-Region Method**
- **A Homogeneous Second-Order Descent Method**

Interior point method for SDPs

SDP is solvable in polynomial time using the interior point methods

• **Take Newton step towards the perturbed KKT system**

$$
AX = b
$$

\n
$$
AX = b
$$

\n
$$
AX = -RP
$$

\n
$$
A^*y + S = C
$$

\n
$$
X^*y + S = C
$$

\n
$$
A^*y + S = C
$$

\n
$$
A^* \Delta y + \Delta S = -RD
$$

\n
$$
S = 0
$$

\n
$$
A^* \Delta y + \Delta S = -RD
$$

\n
$$
HP(X \Delta S + \Delta X S) = -R\mu
$$

• **Efficient numerical solvers have been developed**

COPT, Mosek, SDPT3, SDPA, DSDP…

• **Most IPM solvers adopt primal-dual path-following IPMs except DSDP**

DSDP (Dual-scaling SDP) implements a dual potential reduction method

Homogeneous dual-scaling algorithm

From arbitrary starting dual solution $(y, S > 0, \tau > 0)$ with dual **residual** *R* $\mathcal{A}(X+\Delta X)-b(\tau+\Delta\tau) = 0$ $-A^*(y + \Delta y) + C(\tau + \Delta \tau) - (S + \Delta S) = 0$ $\mu S^{-1} \Delta S S^{-1} + \Delta X = \mu S^{-1} - X$ $\mu \tau^{-2} \Delta \tau + \Delta \kappa = \mu \tau^{-1} - \kappa$

$$
\mathcal{A}X - b\tau = 0
$$

$$
-\mathcal{A}^* y + C\tau - S = 0
$$

$$
b^{\top} y - \langle C, X \rangle - \kappa = 0
$$

$$
X = \mu S^{-1} \qquad \kappa = \mu \tau^{-1}
$$

$$
\begin{pmatrix}\n\mu M & -b - \mu A S^{-1} C S^{-1} \\
-b + \mu A S^{-1} C S^{-1} & -\mu(\langle C, S^{-1} C S^{-1} \rangle + \tau^{-2})\n\end{pmatrix}\n\begin{pmatrix}\n\Delta y \\
\Delta \tau\n\end{pmatrix} =\n\begin{pmatrix}\n\sigma \\
\sigma^T y - \mu \tau^{-1}\n\end{pmatrix}\n-\mu\n\begin{pmatrix}\n\mathcal{A} S^{-1} \\
\langle C, S^{-1} \rangle\n\end{pmatrix}\n+\mu\n\begin{pmatrix}\n\mathcal{A} S^{-1} R S^{-1} \\
\langle C, S^{-1} R S^{-1} \rangle\n\end{pmatrix}
$$

New strategies are tailored for the method

- **Primal iterations can still be fully eliminated**
- $S = -A^*y + C\tau R$ inherits sparsity pattern of data Less memory and since X is generally dense
- **Infeasibility or an early feasible solution can be detected via the embedding**

Computational aspects for HDSDP Solver

To enhance performance, HDSDP (written in ANSI C) is equipped with

- **Pre-solving that detects special structure and dependency**
- **Line-searches over barrier to balance optimality & centrality**
- **Heuristics to update the barrier parameter**
- **Corrector strategy to reuse the Schur matrix**
- **A complete dual-scaling algorithm from DSDP5.8**
- **More delicate strategies for the Schur system**

Computational results

- **HDSDP is tuned and tested for many benchmark datasets**
- **Good performance on problems with both low-rank structure and sparsity**
- **Solve around 70/75 Mittelmann's benchmark problems**
- **Solve 90/92 SDPLIB problems**

(Results run on an intel i11700K machine)

Selected Mittelmann's benchmark problems where HDSDP is fastest (all the constraints are rank-one)

Optimal Diagonal Pre-Conditioner [QGHYZ 20]

Given matrix $M = X^{\top}X > 0$, iterative method (e.g., CG) is often applied to solve

 $Mx = b$

- Good performance needs pre-conditioning and we solve $P^{-1/2}MP^{-1/2}x' = b$
- Convergence of iterative methods depends on the condition number $\kappa(M)$ A good pre-conditioner reduces $\kappa(P^{-1/2}MP^{-1/2})$
- Diagonal $P = D$ is called diagonal pre-conditioner

More generally, we wish to find D (or E) such that $\kappa(D \cdot X \cdot E)$ is minimized ?

Is it possible to find optimal D^* and E^*

- - ? **SDP works!**

- Finding the optimal diagonal pre-conditioner is an SDP
- Two SDP blocks and sparse coefficient matrices
- Trivial dual interior-feasible solution
- An ideal formulation for dual SDP methods $D = \sum d_i e_i e_i^T$

What about two-sided ?

Two-Sided Pre-Conditioner

- Common in practice and popular heuristics exist e.g. Ruiz-scaling, matrix equilibration & balancing
- Not directly solvable using SDP
- Can be solved by *iteratively* fixing $D_1(D_2)$ and optimizing the other side Solving a sequence of SDPs
- Answer a question: how far can diagonal pre-conditioners go

 $\min_{D_1 \succeq 0, D_2 \succeq 0} \kappa(D_1 \times D_2)$

Computational Results: Solving for the Optimal Pre-Conditioner

- Perfectly in the dual form
- Trivial dual feasible interior point solution
- 1 is an upper-bound for the optimal objective value

SDP from optimal drag pre-conditioning problem HDSDP

$$
\begin{array}{ccc}\n& \text{max} & \delta \\
& \delta, d & \\
\text{subject to} & D - M \preceq 0 \\
& \delta M - D \preceq 0\n\end{array}
$$

- A dual SDP algorithm (successor of DSDP5.8 by Benson)
- Support initial dual solution
- Customization for the diagonal pre-conditioner

Computational results: Randomized preconditioner

- Many matrices result from statistical datasets
- $M = X^T X$ estimates the covariance matrix
- It suffices to use a few samples to approximate

How few? As few as $O(log(sample))!$

- It generally takes 1% to 5% of the samples to approximate well
- Scales well with dimension and saves much time for matrix-matrix multiplication

Experiment over regression datasets shows that

Computational Results: Optimal Diagonal Pre-Conditioner

• Test over 491 Suite Sparse Matrices of fewer than 1000 columns

• LIBSVM datasets

Summary

- **a general purpose SDP solver**
- **using dual-scaling and simplified HSD**
- **developed with heuristics and intuitions from DSDP**
- **equipped with several new computational tricks**
- **more iterative methods for solving subproblems?**

HDSDP is

Today's Talk

• **New developments of ADMM-based interior point (ABIP) Method**

-
- **Optimal Diagonal Preconditioner and HDSDP**
- **A Dimension Reduced Trust-Region Method**
- **A Homogeneous Second-Order Descent Method**

$$
g_k = \nabla f(x_k), H_k = \nabla^2 f(x_k)
$$

• Goal: find x_k such that:

 $|| \nabla f(x_k) || \leq \epsilon$ (primary, first-order condition)

- For the ball-constrained nonconvex QP: min $c^T x + 0.5 xTQx$ s.t. $||x||_2 \le 1$ $O(loglog(\epsilon^{-1}))$; see Y (1989,93), Vavasis&Zippel (1990)
- For nonconvex QP with polyhedral constraints: $O(\epsilon^{-1})$; see Y (1998), Vavasis (2001)
-
- $\lambda_{min}(H_k) \geq -\sqrt{\epsilon}$ (in active subspace, secondary, second-order condition)

Early Complexity Analyses for Nonconvex Optimization

 $min f(x), x \in X$ in \mathbb{R}^n ,

• where f is nonconvex and twice-differentiable,

Standard methods for general nonconvex optimization I

First-order Method (FOM): Gradient-Type Methods

- Assume f has L-Lipschitz cont. gradient
- Global convergence by, e.g., linear-search (LS)
- No guarantee for the second-order condition
- Worst-case complexity, $O(\epsilon^{-2})$; see the textbook by Nesterov (2004)
- Each iteration requires O(n²) operations

Second-order Method (SOM): Hessian-Type Methods

- Assume f has M-Lipschitz cont. Hessian
- Global convergence by, e.g., linear-search (LS), Trust-region (TR), or Cubic Regularization
- Convergence to second-order points
- No better than $O(\epsilon^{-2})$, for traditional methods (steepest descent and Newton); according to Cartis et al. (2010) .

Each iteration requires O(n³) operations

-
-

Standard methods for general nonconvex optimization II

- Trust-region with the fixed-radius strategy, $O(\epsilon^{-3/2})$, see the lecture notes by Y since 2005
- Cubic regularization, $O(\epsilon^{-3/2})$, see Nesterov and Polyak (2006), Cartis, Gould, and Toint (2011)
- A new trust-region framework, $O(\epsilon^{-3/2})$, Curtis, Robinson, and Samadi (2017)

With "slight" modification, complexity of SOM reduces from $O(\epsilon^{-2})$ to $O(\epsilon^{-3/2})$

Variants of SOM Analyses of SOM for general nonconvex optimization since 2000

$$
x_{k+1} = x_k - \alpha_k^1 \nabla f(x_k) + \alpha_k^2 d_k = x_k + d_{k+1}
$$

• In SOM, a method typically minimizes a full dimensional quadratic Taylor expansion to obtain direction vector d_{k+1} . For example, one TR step solves for d_{k+1} from \min_{d} $(g_k)^T d + 0.5 dTH_k d$ s.t. $||d||_2 \leq \Delta_k$ where Δ_k is the trust-region radius.

-
- where step-sizes are constructed; including CG, PT, AGD, Polyak, ADAM and many others.

• DRSOM: Dimension Reduced Second-Order Method **Motivation: using few directions in SOM**

Motivation from multi-directional FOM

• Two-directional FOM, with d_k being the momentum direction $(x_k - x_{k-1})$

• Plug the expression into the full-dimension TR quadratic minimization problem, we minimize a m-dimension trust-region subproblem to decide "m stepsizes":

 $_{k}^{T}H_{k}D_{k}$, $c_{k}=(g_{k})^{T}D_{k}$

$$
\min m_k^{\alpha}(\alpha) := (c_k)^T \alpha + \frac{1}{2} \alpha^T Q_k \alpha
$$

$$
||\alpha||_{G_k} \leq \Delta_k
$$

$$
G_k = D_k^T D_k, Q_k = D_k^T H_k D
$$

How to choose *Dk*? How great would *m* be? Rank of *H*k? (Randomized) rank reduction of a symmetric matrix to log(n) (So et al. 08)?

DRSOM I

- The DRSOM in general uses m-independent directions $d(\alpha)$: = $D_k \alpha$, $D_k \in R^{nm}$, $\alpha \in R^m$
-

$$
d = -\alpha^1 \nabla f(x_k) + \alpha^2 d_k := d(\alpha)
$$

where $g_k = \nabla f(x_k)$, $H_k = \nabla^2 f(x^k)$, $d_k = x_k - x_{k-1}$

• Then we minimize a 2-D trust-region problem to decide "two step-sizes":

$$
\begin{aligned}\n\min \ m_k^{\alpha}(\alpha) &:= f(x_k) + (c_k)^T \alpha + \frac{1}{2} \alpha^T Q_k \alpha \\
&= \begin{bmatrix} |\alpha| |_{G_k} \le \Delta_k \\
-g_k^T g_k & -g_k^T d_k \\
-g_k^T d_k & d_k^T d_k \end{bmatrix}, Q_k = \begin{bmatrix} g_k^T H_k g_k & -g_k^T H_k d_k \\
-g_k^T H_k d_k & d_k^T H_k d_k \end{bmatrix}, c_k = \begin{bmatrix} -||g_k||^2 \\
g_k^T d_k \end{bmatrix}\n\end{aligned}
$$

$$
k = x_k - x_{k-1}
$$

DRSOM II

• In following, as an example, DRSOM adopts two FOM directions

DRSOM III

DRSOM can be seen as:

- "Adaptive" **Accelerated Gradient Method** (Polyak's momentum 60)
- A second-order method minimizing quadratic model in the reduced 2-D

 $m_k(d) = f(x_k) + \nabla f(x_k)^T d +$ 1 2

compare to, e.g., Dogleg method, 2-D Newton **Trust-Region Method** $d \in \text{span}\{g_k, [H(x_k)]^{-1}g_k\}$ (e.g., Powell 70)

- A conjugate direction method for convex optimization exploring the **Krylov Subspace** (e.g., Yuan&Stoer 95)
- For convex quadratic programming with no radius limit, terminates in n steps
- $d^T\nabla^2 f(x_k)d$, $d \in span\{-g_k, d_k\}$
	-

Computing Hessian-Vector Product in DRSOM is the Key

In the DRSOM with two directions:

$$
Q_k = \begin{bmatrix} g_k^T H_k g_k & -g_k^T H_k d_k \\ -g_k^T H_k d_k & d_k^T H_k d_k \end{bmatrix}, c_k = \begin{bmatrix} -||g_k|| \\ g_k^T d_k \end{bmatrix}
$$

How to cheaply obtain Q? Compute $H_k g_k$, $H_k d_k$ first.

- Analytic approach to fit modern automatic differentiation, $H_k g_k = \nabla$ (1 2 $g_k^T g_k$), $H_k d_k = \nabla (d_k^T g_k)$,
- or use Hessian if readily available !

• Finite difference:

$$
H_k \cdot v \approx \frac{1}{\epsilon} [g(x_k + \epsilon \cdot v) - g_k],
$$

DRSOM: key assumptions and theoretical results (Zhang at al. SHUFE)

Theorem 1. If we apply DRSOM to QP, then the algorithms terminates in at most n steps to find a first-order stationary point

Theorem 2. (Global convergence rate) For *f* with second-order Lipschitz condition, DRSOM terminates in $O(\epsilon^{-3/2})$ iterations. Furthermore, the iterate x_k satisfies the firstgradient and momentum.

Theorem 3. (Local convergence rate) If the iterate x_k converges to a strict local optimum x^* such that $H(x^*) > 0$, and if **Assumption (c)** is satisfied as soon as $\lambda_k \le C_\lambda \parallel d_{k+1} \parallel$, then DRSOM has a local superlinear (quadratic) speed of convergence, namely: $|| x_{k+1}$ $-x^*$ ||= $O(||x_k - x^*||^2)$

Assumption. (a) f has Lipschitz continuous Hessian. (b) DRSOM iterates with a fixedradius strategy: $\Delta_k = \epsilon/\beta$) c) If the Lagrangian multiplier $\lambda_k < \sqrt{\epsilon}$, assume $\| (H_k - \widetilde{H}_k)d_{k+1} \| \leq C \| d_{k+1} \|^{2}$ (Cartis et al.), where \widetilde{H}_k is the projected Hessian in the subspace (commonly adopted for approximate Hessian)

-
-
- order condition, and the Hessian is positive semi-definite in the subspace spanned by the
	-

Sensor Network Location (SNL)

• Consider Sensor Network Location (SNL)

 $N_x = \{(i, j) : ||x_i - x_j|| = d_{ij} \leq r_d\}, N_a =$

where r_d is a fixed parameter known as the radio range. The SNL problem considers the following QCQP feasibility problem,

$$
||x_i - x_j||^2 = d_{ij}^2, \forall (i, j) \in N_x
$$

$$
||x_i - a_k||^2 = \bar{d}_{ik}^2, \forall (i, k) \in N_a
$$

• We can solve SNL by the nonconvex nonlinear least square (NLS) problem

$$
\min_{X} \sum_{(i < j, j) \in N_x} (\|x_i - x_j\|^2 - d_{ij}^2)^2 + \sum_{(k,j) \in N_a} (\|a_k - x_j\|^2 - \bar{d}_{kj}^2)^2.
$$

$$
= \{(i,k): ||x_i - a_k|| = d_{ik} \leq r_d\}
$$

Sensor Network Location (SNL)

- Graphical results using SDP relaxation to initialize the NLS
- $n = 80$, $m = 5$ (anchors), radio range $= 0.5$, degree $= 25$, noise factor $= 0.05$
- Both Gradient Descent and DRSOM can find good solutions !

Sensor Network Location (SNL)

- Graphical results without SDP relaxation
- DRSOM can still converge to optimal solutions

Neural Networks and Deep Learning

To use DRSOM in machine learning problems

- We apply the mini-batch strategy to a vanill
- Use Automatic Differentiation to compute g
- Train ResNet18 Model with CIFAR 10
- Set Adam with initial learning rate 1e-3

Neural Networks and Deep Learning

Training results for ResNet18 with DRSOM and Adam

- DRSOM has rapid convergence (30 epochs)
- DRSOM needs little tuning

Test results for ResNet18 with DRSOM and Adam

Pros

- DRSOM may overfit the models
- Needs 4~5x time than Adam to run same number of epoch

Cons

Good potential to be a standard optimizer for deep learning!

• **TRPO** attempts to optimize a surrogate function (based on the current iterate) of the

• In practice, it linearizes the surrogate function, quadratizes the KL constraint, and obtain

objective function while keep a KL divergence constraint

$$
\begin{array}{ll}\n\max_{\theta} & L_{\theta_k}(\theta) \\
\text{s.t.} & \text{KL}\left(\Pr_{\mu}^{\pi_{\theta_k}} \|\Pr_{\mu}^{\pi_{\theta}}\right) \leq \delta\n\end{array}
$$

$$
\begin{array}{ll}\n\max_{\theta} & g_k^T (\theta - \theta_k) \\
\text{s.t.} & \frac{1}{2} (\theta - \theta_k)^T F_k (\theta - \theta_k) \le \delta\n\end{array}
$$

where F_k is the Hessian of the KL divergence.

DRSOM for TRPO I (Xue et al. SHUFE)

DRSOM/TRPO Preliminary Results I

• Although we only maintain the linear approximation of the surrogate function, surprisingly the

Timestep

algorithm works well in some RL environments

DRSOM/TRPO Preliminary Results II

• Sometimes even better than TRPO !

Timestep

DRSOM for LP Potential Reduction (Gao et al. SHUFE)

We consider a simplex-constrained QP model We wish to solve a standard LP (and its dual)

$$
\begin{array}{ccc}\n\begin{array}{ccc}\n\text{min} & \frac{1}{2} ||Ax||^2 & =: f(x) & \longrightarrow & A^{\top}y - s + \\ \n\text{subject to} & e^{\top}x = 1 & & b^{\top}y - c^{\top}x - \\ \n& x \ge 0 & & e_n^{\top}x + e_n^{\top}s + k\n\end{array}\n\end{array}
$$

The self-dual embedding builds a bridge

.The hew consignent the use of R seems potential function and apply DRSOM to it

• How to solve much more general LPs?

$$
\phi(x) := \rho \log(f(x)) - \sum_{i=1}^{n} \log x_i
$$

$$
\nabla \phi(x) = \frac{\rho \nabla f(x)}{f(x)} - X^{-1} e = -\frac{\rho \nabla f(x) \nabla f(x)^{\top}}{f(x)^2} + \rho \frac{A^{\top} A}{f(x)} + X^{-2}
$$

Combined with scaled gradient(Hessian) projection, the method solves LPs

DR-Potential Reduction: Preliminary Results

One feature of the DR-Potential reduction is the use of negative curvature of

- $\nabla^2 \phi(x) = -$
- Computable using Lanczos iteration
- Getting LPs to high accuracy $10^{-6} \sim 10^{-8}$ if negative curvature is efficiently computed

$$
\frac{\rho \nabla f(x) \nabla f(x)^{\top}}{f(x)^2} + \rho \frac{A^{\top} A}{f(x)} + X^{-2}
$$

• Now solving small and medium Netlib instances in 10 seconds

within 1000 iterations

• In MATLAB and getting transferred into C for acceleration

DRSOM for Riemannian Optimization (Tang et al. NUS) $\min_{x \in \mathcal{M}} f(x)$ (ROP)

- \bullet M is a Riemannian manifold embeded in Euclidean space \mathbb{R}^n .
- bounded in M .

 \overline{a} is it is located to \overline{a} and \overline{a} and \overline{b} R-DRSOM: Ch for k **Step** H_k d_k

Step

2.1 Compute the vector
$$
c_k = \begin{bmatrix} -\langle g_k, g_k \rangle_{x_k} \\ -g_k \rangle_{x_k} \end{bmatrix}
$$
, $G_k := \begin{bmatrix} -\langle g_k, g_k \rangle_{x_k} \\ -\langle g_k, g_k \rangle_{x_k} \end{bmatrix}$ and the following matrices
\n $Q_k = \begin{bmatrix} \langle g_k, H_k g_k \rangle_{x_k} & \langle -d_k, H_k g_k \rangle_{x_k} \\ -g_k \rangle_{x_k} & \langle d_k, H_k g_k \rangle_{x_k} \end{bmatrix}$, $G_k := \begin{bmatrix} \langle g_k, g_k \rangle_{x_k} & -\langle d_k, g_k \rangle_{x_k} \\ -\langle g_k, g_k \rangle_{x_k} & \langle d_k, H_k g_k \rangle_{x_k} \end{bmatrix}$, $G_k := \begin{bmatrix} \langle g_k, g_k \rangle_{x_k} & -\langle d_k, g_k \rangle_{x_k} \\ -\langle d_k, g_k \rangle_{x_k} & \langle d_k, d_k \rangle_{x_k} \end{bmatrix}$.

Step 3. Solve the following 2 by 2 trust region subproblem with radius $\Delta_k > 0$

$$
\alpha_k := \arg\min_{\|\alpha_k\|_{G_k} \leq \Delta_k} f(x_k) + c_k^\top \alpha + \frac{1}{2} \alpha^\top Q_k \alpha;
$$

$$
(x_k - \alpha_k^1 g_k + \alpha_k^2 d_k);
$$

Step 4. $x_{k+1} := \mathcal{R}_{x_k}$ end Return x_k .

• $f: \mathbb{R}^n \to \mathbb{R}$ is a second-order continuously differentiable function that is lower

Max-CUT SDP

$$
\mathsf{Max-Cut:} \ \min \left\{ - \langle L, X \rangle : \ \operatorname{diag}(X) = e, \ X \in \mathbb{S}_{+}^{n} \right\}.
$$

$$
\min \left\{ - \left\langle L, RR^{\top} \right\rangle : \ \operatorname{diag}(RR^{\top}) = e, \ R \in \mathbb{R}^{n \times r} \right\}.
$$

$$
\begin{array}{c} (1) \\ (2) \end{array}
$$

1D-Kohn-Sham Equation

$$
\min\left\{\frac{1}{2}\mathrm{tr}(R^\top LR)+\frac{\alpha}{4}\mathrm{diag}(RR^\top)^\top L^{-1}\mathrm{diag}(RR^\top):\ R^\top R=l_p,\ R\in\mathbb{R}^{n\times r}\right\},\qquad(3)
$$

where L is a tri-diagonal matrix with 2 on its diagonal and -1 on its subdiagonal and $\alpha > 0$ is a parameter. We terminate algorithms when $\|\mathrm{grad} f(R)\| < 10^{-4}$.

Figure 1: Results for Discretized 1D Kohn-Sham Equation. $\alpha = 1$.

Today's Talk

• **New developments of ADMM-based interior point (ABIP) Method**

-
- **Optimal Diagonal Preconditioner and HDSDP**
- **A Dimension Reduced Trust-Region Method**
- **A Homogeneous Second-Order Descent Method**

A Descent Direction Using the Homogenized Quadratic Model I

$$
^{2}<-\sqrt{\epsilon},
$$

- **Big Question: How to drop Assumption (c) in DRSOM analyses? Recall the classical trust-region method minimizes the quadratic model**
	- $\min_{d \in \mathbb{R}^n} m_k(d) := g_k^T d$ s.t. $||d||$
- **-***g***^k is the first-order steepest descent direction but ignores Hessian; the direction of** *H***^k** negative curvature v meets Assumption (c) and also enables $O(\epsilon^{1.5})$ decrease if $R(H_k, v) = v^T H_k v / ||v$
	- **but such direction does not exist if it becomes nearly convex…**
- **Could we construct a direction integrating both? Answer: Use the homogenized quadratic model!**

$$
+\frac{1}{2}d^T H_k d
$$

$$
\leq \Delta_k.
$$

A Descent Direction Using the Homogenized Quadratic Model II

• **Using the homogenization trick by lifting with extra scalar :**

$$
\psi_k\left(\xi_0,t;\delta\right):=\frac{1}{2}\begin{bmatrix}\xi_0\\t\end{bmatrix}^T\begin{bmatrix}H_k & g_k\\g_k^T & -\delta\end{bmatrix}\begin{bmatrix}\xi_0\\t\end{bmatrix}=\frac{t^2}{2}\begin{bmatrix}\xi_0/t\\1\end{bmatrix}^T\begin{bmatrix}H_k & g_k\\g_k^T & -\delta\end{bmatrix}\begin{bmatrix}\xi_0/t\\1\end{bmatrix}
$$

- The homogeneous model is equivalent to m_k up to scaling: $\psi_k(\xi_0, t; \delta) = t^2 \cdot (m_k(\xi_0/t) - \delta)$
- Find a good direction $\xi = \xi_0/t$ (if $t = 0$ then set $t=1$) by the leftmost **eigenvector:**

$$
\min_{|[\xi_0;t]| \leq 1} \psi_k(\xi_0,t;\delta)
$$

• Accessible at the cost of $O(\epsilon^{-1/4})$ via the randomized Lanczos method.

This is the Classical Homogenization Trick in QCQP via SDP

• **For inhomogeneous QP (and QCQP):**

$$
\min x^T Q_0 x - 2b_0^T x
$$

s.t. $x^T Q_i x - 2b_i^T x + c_i \le 0$, $i = 1,..., m$

• **Used with SDP relaxation:**

$$
\min M_0 \bullet X
$$

s.t. $M_i \bullet X \le 0, \quad i = 1, ..., m$

$$
X_{00} = 1, X \ge 0
$$

• **Homogenized QCQP and SDP relaxation enables strong performance and theoretical analysis, and it guarantees a rank-one solution if** *m=1***.**

*** Rojas and Sorensen 2001**

$$
\min x^T Q_0 x - 2b_0^T x t
$$

s.t. $x^T Q_i x - 2b_i^T x t + c_i t^2 \le 0$, $i = 1, ...,$
 $t^2 = 1$

$$
M_i = \begin{bmatrix} c_i & b_i^T \\ b_i & Q_i \end{bmatrix}, X = \begin{bmatrix} 1 & x^T \\ x^T & X_0 \end{bmatrix}
$$

The Descent Direction Using the Homogenized Quadratic Model

Define the following parametrized (δ) homogenized quadratic model at x_k :

$$
\psi_k\left(\xi_0,t;\delta\right):=\frac{1}{2}\begin{bmatrix}\xi_0\\t\end{bmatrix}^T\begin{bmatrix}H_k & g_k\\ g_k^T & -\delta\end{bmatrix}\begin{bmatrix}\xi_0\\t\end{bmatrix}=\frac{t^2}{2}\begin{bmatrix}\xi_0/t\\ 1\end{bmatrix}^T\begin{bmatrix}H_k & g_k\\ g_k^T & -\delta\end{bmatrix}\begin{bmatrix}\xi_0/t\\ 1\end{bmatrix}
$$

- The "un-homogenized vector" $\xi = \xi_0/t$ can be found by the leftmost eigenvalue computation and scaling (if $t = 0$ then set $t=1$);
- Lemma 1 (strict negative curvature) : if $g_k \neq 0$, $H_k \neq 0$, let λ_1 be the

leftmost eigenvalue of H_k g_k $g_k^T \quad -\delta$, then $\lambda_1 \leq -\delta$.

• The motivates us to use ξ as a second-order descent direction **resulting a single-looped (easy-to-implement) method**

Theoretical Guarantees of HSODM

• **Consider use the second-order homogenized direction, and the length** $2\sqrt{\epsilon}$ \boldsymbol{M} where $f(x)$ has L -Lipschitz

- **of each step** $\|\eta \xi\|$ **is fixed:** $\|\eta \xi\| \leq \Delta_k =$ **gradient and -Lipschitz Hessian.**
- **Theorem 1** (Global convergence rate) : if $f(x)$ satisfies the Lipchitz Assumption and $\delta = \sqrt{\varepsilon}$, the iterate moves along homogeneous vector $\xi: x_{k+1} = x_k + \eta_k \xi$, then, if we choose $\eta_k = \Delta_k / ||\xi||$, and terminate at $||\xi||$ $<\Delta_k$, then algorithm has $O(\epsilon^{-3/2})$ iteration complexity. Furthermore, x_{k+1} satisfies approximate first-order and second-order conditions.

Global Convergence Rate: Outline of Analysis

• **A concise analysis using fixed radius** ∆

Let $x_{k+1} = x_k + \eta \xi$, $R(H_k, \xi) = \xi^T H_k \xi / ||\xi||^2$, $\xi = \xi_0 / t$ \triangleright $f(x_{k+1}) - f(x_k) \leq \delta\Delta^2$ 2 $+$ \overline{M} 6

 \triangleright **δ** must be some greater than $O(\sqrt{\epsilon})$ to have $O(\epsilon)$ 3 z) decrease o **(small step means convergence) Otherwise** < ∆**, then we choose** $step-size $\eta = 1$ and$

 \triangleright $||g_{k+1}|| \leq 4(L+\delta)^2 \Delta^3 +$ \overline{M} 2

 \triangleright **6 must be some** less than $O(\sqrt{\epsilon})$ and converge

* The eigenvector does not change, and we do not have to solve ξ again.

-
- o (sufficient decrease in large step) If $\|\xi\| \geq \Delta$, we choose $\eta = \Delta / \|\xi\|$
	- Δ^3 , regardless of $t=0$ or not

 $\Delta^2 + (2L\delta + 2\delta^2) \Delta$

Theoretical Guarantees of HSODM (cont.)

- **Theorem 2** (Local convergence rate): If the iterate x_k of HSODM converges to a strict local optimum x^* such that $H(x^*) > 0$,and then $\eta_k = 1$ if k is sufficiently large. If we do not terminate HSODM and set $\delta = 0$, then HSODM **has a local superlinear (quadratic) speed of convergence, namely:** $\parallel x_{k+1}$ $-x^*$ ||= $O(||x_k - x^*||^2)$
- **The local convergence property of HSODM is very similar to classical trustregion method when the iterate becomes unconstrained Newton steps**

Ax - *b* **Preliminary results: HSODM and DRSOM + HSODM**

An example of L2-Lp

• *GD* **and** *LBFGS* **both use a**

Line-search (Hager-Zhang)

- *DRSOM* **uses 2-D subspace**
- **HSODM and DRSOM +**

HSODM are much better!

• *DRSOM* **can also benefit from the homogenized system**

HSODM (cold) HSODM (warm)

mm

The Effect of Warm-Starting the Eigenvector

Convex $QP : Q \in S^{200 \times 200}_{+}$ $+$

> **An example of warm starting**

• *HSODM(warm)* **uses the**

last eigenvector to warm start the Lanczos method

• *HSODM(warm)* always

needs less subproblem iter than *HSODM(cold)*

Ongoing Research and Future Directions on DRSOM

- **Are there other alternatives to remove Assumption c) in DRSOM analyses?**
- **Low-rank approximation of the homogenized matrix** H_k g_k $g_k{}^T$ 0 **(+µ●I, that is, adding**

sufficiently large scalar µ so that it is positive definite if necessary) to make the leftmost eigenvector computing easier (Randomized rank reduction of a symmetric matrix to log(n), So et al. 08) and "Hot-Start" eigenvector computing by Power

Methods (linear convergence of Liu et al. 2017)?

- **Indefinite and Randomized Hessian rank-one updating via BFGS/SR1**
- **Dimension Reduced Non-Smooth/Semi-Smooth Newton**

Takeaway: Second-Order Information matters and better to integrate FOM and SOM!

• **THANK YOU**