AI4OPT Tutorial Series: Practice problems

November 14, 2022

- 1. Let $\{P_n : n \ge 1\}$ and $\{Q_n : n \ge 1\}$ be probability measures on $(\mathcal{X}_n, \mathcal{F}_n)$. Prove that the following are equivalent:
 - Q_n is contiguous to P_n .
 - For any sequence of real valued random variables T_n , if $T_n \xrightarrow{P_n} 0$, then $T_n \xrightarrow{Q_n} 0$.
- 2. Let $\{P_n : n \geq 1\}$ and $\{Q_n : n \geq 1\}$ be probability measures on $(\mathcal{X}_n, \mathcal{F}_n)$. If $\mathbb{E}_{P_n}\left[\left(\frac{\mathrm{d}Q_n}{\mathrm{d}P_n}\right)^2\right]$ exists and remains bounded as $n \to \infty$, then $\{Q_n : n \geq 1\}$ is contiguous to $\{P_n : n \geq 1\}$.
- 3. Let σ, τ be iid samples from $\text{Unif}(\{\pm 1\}^n)$. Fix $\lambda < 1$. Prove that there exists M > 0 (independent of n) such that

$$\limsup_{n \to \infty} \mathbb{E} \Big[\exp \left(\frac{\lambda^2}{2n} \langle \sigma, \tau \rangle^2 \right) \Big] \le M.$$

4. Fix $\lambda, \mu > 0$. Let $\mathbf{W} \in \mathbb{R}^{n \times n}$, $\mathbf{W} = \mathbf{W}^{\top}$, $\{W_{ij} : i < j\} \sim \mathcal{N}(0, 1/n)$ iid, and $\{W_{ii} : 1 \leq i \leq n\} \sim \mathcal{N}(0, 2/n)$ iid. Let σ be a uniform random sample from $\{\pm 1\}^n$ and $u \sim \mathcal{N}(0, I_p/p)$. Finally, let $\mathbf{A} = \frac{\lambda}{n} \sigma \sigma^{\top} + \mathbf{W}$, and $\mathbf{B} = [b_1, \cdots, b_n]$, $b_i = \sqrt{\frac{\mu}{n}} \sigma_i u + z_i$, where $z_i \sim \mathcal{N}(0, I_p/p)$ are iid. Assume that $p/n \to 1/\gamma \in (0, \infty)$. This is a gaussian version of the contextual stochastic block model. Prove that consistent detection is impossible if $\lambda^2 + \frac{\mu^2}{\gamma} < 1$.