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Statistical model with planted structure

Question: How to recover latent structure from noisy data?

-'x'f l;‘l'
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Classical examples

® Recovery of planted clique in Erd6s-Rényi graphs

e Community detection under Stochastic Block Model

® Clustering in mixture models

Common theme: low-rank structure
® Underpinning of many phase transitions and algorithms, e.g. spectral
method, SDP relaxation, etc
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A new zoo of planted problems...

® Planted bipartite matching [Chertkov-Kroc-Krzakala-Vergassola-Zdeborova '10]

Graph matching (network alignment) [Pedarsani-Grossglauser '11]

Planted Hamiltonian cycle problem (TSP) [Bagaria-Ding-Tse-W-Xu '18]

Planted trees [Massoulié-Stephan-Towsley '18]

Planted k-factors [Sicuro-Zdeborova '20]

Planted k-nearest-neighbor graph [Ding-Wu-Xu-Yang '19]
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A new zoo of planted problems...

® Planted bipartite matching [Chertkov-Kroc-Krzakala-Vergassola-Zdeborova '10]

Graph matching (network alignment) [Pedarsani-Grossglauser '11]

Planted Hamiltonian cycle problem (TSP) [Bagaria-Ding-Tse-W-Xu '18]

Planted trees [Massoulié-Stephan-Towsley '18]

Planted k-factors [Sicuro-Zdeborova '20]
® Planted k-nearest-neighbor graph [Ding-Wu-Xu-Yang '19]

Common theme: Lack of low-rank structure = new challenges in both
statistical analysis and algorithm design

This tutorial:
® |inear assignment: Planted bipartite matching

® Quadratic assignment: Graph matching (network alignment)
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Outline of tutorial

Lecture 1: Planted matching problem

Lecture 2: Random graph matching: Information-theoretic limits

Lecture 3: Random graph matching: Efficient algorithms

Lecture 4: Random graph matching: Low-degree polynomials and
limits of local algorithms
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Assignment problems in operations research

Assignment problems were introduced for facilities location problem by

[Koopmans-Beckmann Econometrica '57]

ASSIGNMENT PROBLEMS AND THE LOCATION OF ECONOMIC
ACTIVITIES*

By TsarLmng C. KooPMANS AND MARTIN BECKMANN

Two problems in the allocation of indivisible resources are discussed. Both can
be interpreted as problems of assigning plants to locations. The first problem, in
which cost of transportation between plants is ignored, is found to be a linear
programming problem, with which is associated a system of rents that sustains an
optimal assignment. The recognition of cost of interplant transportation in the
second problem introduces complications which call for more laborious and largely
unexplored computations and which also appear to defeat the price system as a
means of sustaining an optimal assignment.
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The planted matching model

Jiaming Xu (Duke)

A weighted bipartite graph G
A hidden perfect matching M*

All n(n — 1) pairs not in M* are
connected w.p. %

Edge weight
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The planted matching model

A weighted bipartite graph G

@ @) ® A hidden perfect matching M*
e All n(n— 1) pairs not in M* are
() @) connected w.p. %
® Edge weight
. . W. i’,’\d,' {P e e M*
Q e¢ M*
@ (©)

Goal: recover M* from G
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Motivating application: particle tracking

[Chertkov-Kroc-Krzakala-Vergassola-Zdeborovd PNAS'10]

® Tracking particles advected by turbulent fluid flow
® Goal: recover the latent correspondence between particles
e d=n, P=|N(0,x)| and Q = Uniform|0, n]
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Motivating application: particle tracking

Our replica calculations also show that the “random distance” model presents an interesting phase transition at the
diffusivity k. =~ 0.174. For £* < k., the MPA myp4 is identical to the special one 7* with high probability, whereas
for K* > k. the overlap (defined via the Hamming distance) between the most likely snment myrpa and the special
one 7* is extensive, i.e., O(N). The comparison with the finite-dimensional case is discussed in the Results section.

[Chertkov-Kroc-Krzakala-Vergassola-Zdeborova PNAS'10]

® Tracking particles advected by turbulent fluid flow

® Goal: recover latent correspondence between particles based on
pairwise distances

e d=n, P=|N(0,x)| and Q = Uniform|0, n].
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Motivating application: particle tracking

Our replica calculations also show that the “random distance” model presents an interesting phase transition at the
diffusivity k. =~ 0.174. For £* < k., the MPA myp4 is identical to the special one 7* with high probability, whereas
for K* > k. the overlap (defined via the Hamming distance) between the most likely snment myrpa and the special
one 7* is extensive, i.e., O(N). The comparison with the finite-dimensional case is discussed in the Results section.

[Chertkov-Kroc-Krzakala-Vergassola-Zdeborova PNAS'10]

Tracking particles advected by turbulent fluid flow

Goal: recover latent correspondence between particles based on
pairwise distances

d =n, P=|N(0,x)| and @ = Uniform|[0, n].
Optimal & turns out to be i ~ 0.159
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Maximum likelihood estimation as linear assignment

Maximum likelihood estimation reduces to max-weighted matching:

- P
My, = arg max > _ log g (W)
eeM

® |inear assignment: computable in polynomial time

® For certain distributions e.g. exponentials, further reduce to
min-weighted matching in terms of W,
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Maximum likelihood estimation reduces to max-weighted matching:

- P
My, = arg max > _ log g (W)
eeM

® |inear assignment: computable in polynomial time

® For certain distributions e.g. exponentials, further reduce to
min-weighted matching in terms of W,

® How much does My, have in common with M*?

_ 1~ 1 (-
overlap( M., M*) £ —IE‘MML AM|=1- 24{«:‘/\/11\4LA/\4*
n n
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@ Average degree d
@® Similarity between P and @
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Maximum likelihood estimation as linear assignment

Maximum likelihood estimation reduces to max-weighted matching:

- P
My, = arg max > _ log g (W)
eeM

® |inear assignment: computable in polynomial time

® For certain distributions e.g. exponentials, further reduce to
min-weighted matching in terms of W,

How much does My, have in common with M*?

_ 1~ 1 (-
overlap( M., M*) £ —IE‘MML AM|=1- 24{«:‘/\/11\4LA/\4*
n n

Information-theoretic limit for reconstruction, in terms of

@ Average degree d
@® Similarity between P and @

® Bhattacharyya coefficient (Hellinger affinity) B(P, Q) £ [ /dPdQ
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Main result: phase transition threshold

Theorem (Ding-Wu-X.-Yang '21)
e If\V/d B(P,Q) < 1, then overIap(MML, M*) — 1
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Main result: phase transition threshold

Theorem (Ding-Wu-X.-Yang '21)

e If\V/d B(P,Q) < 1, then overIap(MML, M*) — 1
o If\d B(P,Q) > 1+ ¢, then for all M and some ¢ = c(e)

overlap(l\7l, M*)<1l-c

for both
» sparse model: d, P, Q fixed; and
> dense model: d — oo and Q(x) = 1p(%).

® Resolve the conjecture in [Semerjian-Sicuro-Zdeborovd '20]
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Some interesting special cases

e Unweighted model: P = Q,

Sharp threshold d =1

Coincide with the threshold for emergence of giant component
e Particle tracking: d = n, P = |[N(0, x)|, @ = Uniform[0, n]:

1
Sharp threshold kK = —
27

e Exponential model: d = n, P = exp(\), Q = exp(1/n):

Sharp threshold A = 4
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Infinite-order phase transition under exponential model

Theorem (Ding-Wu-X.-Yang '21)

Assume \ = 4 — €. There exist absolute constants c1, cy:
overlap(Myr,, M*) > 1 — eV ;

Conversely, for all I\7/

overlap(l\7l, M) <1-— e Ve
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Infinite-order phase transition under exponential model

Theorem (Ding-Wu-X.-Yang '21)

Assume \ = 4 — €. There exist absolute constants c1, cy:
overlap(Myr,, M*) > 1 — eV ;

Conversely, for all I\7/

overlap(l\7l, M) <1-— e Ve

e Optimal reconstruction error is exp (—©(1/1/€))

® Resolve the oo-order phase transition
conjecture [Semerjian-Sicuro-Zdeborova '20]
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Overlap of MLE under exponential model

Theorem (Moharrami-Moore-X. '19)
Ii_}m overlap(Myi,, M*) = a()), if0 < A < 4,

where a(X) =1—2 [7° (1 — F(x)) (1 — G(x)) V(x)W(x) dx,
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Overlap of MLE under exponential model

Theorem (Moharrami-Moore-X. '19)

lim overlap(MyL, M*) = a()), if0 <\ <4,

n—oo

where a(X) =1—2 [7° (1 — F(x)) (1 — G(x)) V(x)W(x) dx,

and F, G, V, W is the unique solution to the ODE system

F=(1-F)(1-G)V
G=—(1-F)1-G6)W

V=AV-F)
W =-\W - G) L x s
X
Boundary conditions:  F(x), V(x), G(—x), W(—x) — { >
0 x— —
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Overlap of MLE under exponential model

Theorem (Moharrami-Moore-X. '19)

lim overlap(MyL, M*) = a()), if0 <\ <4,

where a(X) =1—2 [7° (1 — F(x)) (1 — G(x)) V(x)W(x) dx,
overlap a(A)
L0 mmrrmmrr e
0.8}
0.61
0.4}
0.2}
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Overlap of MLE under exponential model

Theorem (Moharrami-Moore-X. '19)

lim overlap(My,, M*) = (), if0 <\ < 4,

n—o0
where a(X) =1—2 [7° (1 — F(x)) (1 — G(x)) V(x)W(x) dx,
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Overlap of MLE under exponential model

Theorem (Moharrami-Moore-X. '19)

lim overlap(My,, M*) = (), if0 <\ < 4,

n—o0
where a(X) =1—2 [7° (1 — F(x)) (1 — G(x)) V(x)W(x) dx,
overlap a(A)
L] R P o
0.8t
0.6
0.4}
0.2

R

a(A) is infinitely differentiable at threshold A = 4!
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Comparison of phase transition orders

Drastically different from the other well-known planted models such as
stochastic block model (conjecture, not fully proven yet)

Overlap Overlap k>5
1}- . 1 k-

0 (a—b) 0 , (a—by?
1 2(a+b) 0(@) k(a + (k— 1)b)
k
Second-order phase transition First-order phase transition
with two groups with five or more groups
[DKMZ'11, MNS’12 13, Massoulié'13] [DKMZ'11, BMNN '16, AS'16]

Aside: A phase transition is of pth order if the (p — 2)th derivative of the
average overlap is continuous
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Comparison of phase transition orders

Spiked Wigner model: Y = XoXT + Z, Xp is en-sparse [Deshpande-Montanari
P g 0 P
'14, Krzakala-X.-Zdeborova '16, Barbier et al '16, Lelarge-Miolane '16,

Montanari-Venkataramanan '17]

M=
o 05 - 1.0 = = 15 2.0
A
Second-order phase transition First-order phase transition

Figure from [Montanari-Venkataramanan '17]
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Finite-order phase transition for unweighted model

® For unweighted model with d =1 + ¢,

1 |~
esginffE’MAM* <e.
Mon

Thus the phase transition is continuous, and is of finite order.

® Determining the exact order of the phase transition for unweighted
model is an open problem
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Analysis

Proof of positive result via maximum likelihood
Proof of negative result via analyzing posterior distribution
Proof of tight error lower bound under exponential model

Proof of overlap of MLE under exponential model
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Proof of positive result via maximum likelihood

* At most (7)t! matchings M with [MAM*| = 2t
® Probability that M has higher likelihood than M* is

Py S lep(w)z > gy < ($84P.9)

n
ec M\ M~ eeM*\M
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Proof of positive result via maximum likelihood

* At most (7)t! matchings M with [MAM*| = 2t
® Probability that M has higher likelihood than M* is

P{ > IOgZ(We)Z > '°gg(We)}<(:’Bz(P,Q))

ec M\ M~ eeM*\M

® Taking union bound =

P[3 M with [IMAM*| > 283n has higher likelihood than M*]

> (Vo (4w 0)

t>Bn
— 0 for some 3 = o(1), if Vd B(P,Q) <1
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Proof of positive result via maximum likelihood

* At most (7)t! matchings M with [MAM*| = 2t
® Probability that M has higher likelihood than M* is

P{ > IOgZ(We)Z > '°gg(We)}<(:’Bz(P,Q))

ec M\ M~ eeM*\M

® Taking union bound =

P[3 M with [IMAM*| > 283n has higher likelihood than M*]

> (Vo (4w 0)

t>Bn
— 0 for some 3 = o(1), if Vd B(P,Q) <1

Aside: If vVdB(P, Q) — 0, then Myr, = M* whp
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Analysis

Proof of positive result via maximum likelihood
Proof of negative result via analyzing posterior distribution
Proof of tight error lower bound under exponential model

Proof of overlap of MLE under exponential model
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Negative result via analyzing posterior distribution

e _..But MLE does not maximize overlap
® Optimal estimator is maximum posterior marginal

® Need to analyze posterior distribution: Gibbs distribution over
perfect matchings

few (m) o< exp <Z log 7;(We)>

ecm
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e _..But MLE does not maximize overlap
® Optimal estimator is maximum posterior marginal

® Need to analyze posterior distribution: Gibbs distribution over
perfect matchings

few (m) o< exp <Z log 7;(We)>

ecm

Crucial observation

Sampling from posterior distribution is optimal within a factor of two.
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Negative result via analyzing posterior distribution

e _..But MLE does not maximize overlap
® Optimal estimator is maximum posterior marginal

® Need to analyze posterior distribution: Gibbs distribution over
perfect matchings

few (m) o< exp <Z log Z(We)>

ecm

Crucial observation
Sampling from posterior distribution is optimal within a factor of two.

Proof: Let M be sampled from posterior distribution. Then for any
estimator M, (M, /\7) aw (M, l\7l) and

E|MAM*| < E|MAM| + E|MAM*| = 2E|MAM?*|.
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Analysis of posterior distribution

® Upper bound the posterior mass of
matchings near M*:

NW(Mnear) 7edn
— < e 1
pw (V) = g

® | ower bound the posterior mass of
matchings far away from M*:

NW(Mfar) 14¢6n
——— > 2
HW(M*) - ( )
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Analysis of posterior distribution

® Upper bound the posterior mass of
matchings near M*:

pw (Muear) _ 7esn
— I e 1
pw(M*)  — ()

® | ower bound the posterior mass of
matchings far away from M*:

pw (Mear) 14¢dn
EWi A ar) 2
() 2

® Proof of (1) is straightforward: truncated first moment
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Analysis of posterior distribution

® Upper bound the posterior mass of
matchings near M*:

NW(Mnear) 7e6n
——F<e 1
,uw(/\/l*) - ( )

® | ower bound the posterior mass of
matchings far away from M*:

NW(Mfar) 14¢6n
——— > 2
HW(M*) - ( )

® Proof of (1) is straightforward: truncated first moment

® Proof of (2) is constructive: find exponentially many matchings
M € Mg, whose likelihood exceeds that of M*
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Lower bound: Augmenting alternating cycles

For perfect matching M, MAM* = disjoint union of alternating cycles

1 o
1- 1
) Mt
\\/\/\ 1/ 2
3 — 3
d A 3 mam ¥
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Lower bound: Augmenting alternating cycles

For perfect matching M, MAM* = disjoint union of alternating cycles

1 »
1- %
) Mt
\\/\/\ 1/ 2
3 g
b Y 3 mram ¥

Goal: Find exponentially many long alternating cycles C that are

augmenting: P P
> log 5 (We) = > log 5(We).
eGEbme(C) eeEred(C)
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Lower bound: Augmenting alternating cycles

For perfect matching M, MAM* = disjoint union of alternating cycles

1 »
1- %
) Mt
\\/\/\ 1/ 2
3 g
b Y 3 mram ¥

Goal: Find exponentially many long alternating cycles C that are

augmenting: P P
> log 5 (We) = > log 5(We).
eGEbme(C) eeEred(C)

® Augmenting alternating cycles are rare;
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Lower bound: Augmenting alternating cycles

For perfect matching M, MAM* = disjoint union of alternating cycles

1 »
1- %
) Mt
\\/\/\ 1/ 2
3 g
b Y 3 mram ¥

Goal: Find exponentially many long alternating cycles C that are

augmenting: P P
> log 5 (We) = > log 5(We).
eGEbme(C) eeEred(C)

® Augmenting alternating cycles are rare; but there are many
alternating cycles
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Failure of second-moment in counting alternating cycles

Natural attempt: first and second moment method.

® Let S be the set of augmenting alternating cycles in G of length at
least cn. Then E|S| = ("),
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Failure of second-moment in counting alternating cycles

Natural attempt: first and second moment method.

® Let S be the set of augmenting alternating cycles in G of length at
least cn. Then E|S| = ("),

o If E(|S|?) < (E|S|)?, then |S| = e®(") with constant probability.
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Failure of second-moment in counting alternating cycles

Natural attempt: first and second moment method.

® Let S be the set of augmenting alternating cycles in G of length at
least cn. Then E|S| = ("),

e If E(|S|?) < (E|S])?, then |S| = e®(") with constant probability.
® However, E(|S|2) > (E|S|)? due to the excessive correlation
between long cycles.
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Failure of second-moment in counting alternating cycles

Natural attempt: first and second moment method.

® Let S be the set of augmenting alternating cycles in G of length at
least cn. Then E|S| = ("),

e If E(|S|?) < (E|S])?, then |S| = e®(") with constant probability.
® However, E(|S|2) > (E|S|)? due to the excessive correlation
between long cycles.

First find many disjoint short paths, then connect the paths into long
cycles [Aldous '98, Ding '13, ...]

Jiaming Xu (Duke) The Planted Matching Problem 23



Existence of many long augmenting alternating cycles

Two-stage cycle-finding scheme

Reserve a set V' of yn vertices for some small v > 0.

@ Stage 1 (path construction): Find ©(n) disjoint short (constant
length) augmenting alternating paths, using vertices in V€.

Jiaming Xu (Duke) The Planted Matching Problem 24



Existence of many long augmenting alternating cycles

Two-stage cycle-finding scheme

Reserve a set V' of yn vertices for some small v > 0.

@ Stage 1 (path construction): Find ©(n) disjoint short (constant
length) augmenting alternating paths, using vertices in V€.

@® Stage 2 (sprinkling): Connect the paths into long cycles, using
vertices in V.

......

‘e, .
.. .
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Existence of many long augmenting alternating cycles

Two-stage cycle-finding scheme

Reserve a set V' of yn vertices for some small v > 0.

@ Stage 1 (path construction): Find ©(n) disjoint short (constant
length) augmenting alternating paths, using vertices in V€.

@® Stage 2 (sprinkling): Connect the paths into long cycles, using
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Existence of many long augmenting alternating cycles

Two-stage cycle-finding scheme

Reserve a set V' of yn vertices for some small v > 0.

@ Stage 1 (path construction): Find ©(n) disjoint short (constant
length) augmenting alternating paths, using vertices in V€.

@® Stage 2 (sprinkling): Connect the paths into long cycles, using
vertices in V.

Caution: need to ensure alternating colors in sprinking
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Two-stage cycle-finding scheme

Stage 1 (path construction): Find {Ly, Re}K_; for K = Q(n) such
that every vertex in Ly is connected to every vertex in Ry via an
augmenting alternating path (length = large constant)

Ly C Ve ......... Ry C (Ve)
Lo C Ve ......... Ry C (V€Y
L3 C Ve ......... Rs C (V)
LKCVC""""' RKC(VC)/
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Two-stage cycle-finding scheme

Stage 2 (sprinkling):

Jiaming Xu (Duke) The Planted Matching Problem 26



Two-stage cycle-finding scheme

Stage 2 (sprinkling):
@ Let U, be set of reserved vertices connecting to Ly
Let V) be set of reserved vertices connecting to Ry

L1 Rl
VA Vi
Ly R>
VA Vo
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Two-stage cycle-finding scheme

Stage 2 (sprinkling):

@ Let U, be set of reserved vertices connecting to Ly
Let V) be set of reserved vertices connecting to Ry

Ly

Jiaming Xu (Duke)
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Two-stage cycle-finding scheme

Stage 2 (sprinkling):
@ Let U, be set of reserved vertices connecting to Ly
Let V) be set of reserved vertices connecting to Ry
@® Find blue edges connecting { U}, {V/}.

Ly R
U; Vi
U v/
L, R>
U Va
Us A
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Two-stage cycle-finding scheme

Stage 2 (sprinkling):
@ Let U, be set of reserved vertices connecting to Ly
Let V) be set of reserved vertices connecting to Ry
@® Find blue edges connecting { U}, {V/}.

Ly R
U; Vi
U v/
L, R>
U Va
Us A
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Two-stage cycle-finding scheme

Super graph: Define Ggyper on [K] x [K]', such that (k, k") is a red edge
for all k, and (i,)’) is a blue edge iff U; and V/ is connected by at least
one blue edge.

Ly R
U; Vi
U v/
Ly R>
VA Va
Us %4
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Two-stage cycle-finding scheme

Super graph: Define Ggyper on [K] x [K]', such that (k, k') is a red edge
for all k, and (i,/") is a blue edge iff U; and \/j’ is connected by at least

one blue edge.
Ovﬁ
N
(=
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Two-stage cycle-finding scheme

Super graph: Define Ggyper on [K] x [K]', such that (k, k') is a red edge
for all k, and (i,/") is a blue edge iff U; and \/j’ is connected by at least

one blue edge.
Ovﬁ
N
(=

@ Each alternating cycle on Ggyper €xpands into an augmenting
alternating cycle in G
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for all k, and (i,/") is a blue edge iff U; and \/j’ is connected by at least

one blue edge.
Ovﬁ
N
(=

@ Each alternating cycle on Ggyper €xpands into an augmenting
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@ Ggyper is a very supercritical Erdés-Rényi bipartite graph with a
planted perfect matching
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Two-stage cycle-finding scheme

Super graph: Define Ggyper on [K] x [K]', such that (k, k') is a red edge
for all k, and (i,/") is a blue edge iff U; and \/j’ is connected by at least

one blue edge.
Ovﬁ
N
(=

@ Each alternating cycle on Ggyper €xpands into an augmenting

alternating cycle in G

@ Ggyper is a very supercritical Erdés-Rényi bipartite graph with a
planted perfect matching

© Gsyper cONtains eSUK) = &n alternating cycles of length
Q(K) = Q(n) (Standard DFS argument [Krivelevich-Lee-Sudakov '13])
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Path construction via neighborhood exploration process

Two-sided tree:

Starting from i, grow a tree, remove the inspected vertices, and then
grow another tree from iy
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Path construction via neighborhood exploration process

Two-sided tree:

Starting from i, grow a tree, remove the inspected vertices, and then
grow another tree from iy

Key challenge

How to ensure large Ly, R connected via augmenting alternating paths.
while not using up too many vertices?
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Exploration + selection

e Explore via BFS in epochs,
each epoch has H steps

® At the end of each epoch,
select leaves whose paths to
root are augmenting and
continue growing

® Behaves as a branching process
with average number of

offsprings (dB?(P, Q))H

TEEREReRtE
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Tight error lower bound under exponential model

® Recall exponential model: d = n, P = exp(\), Q = exp(1/n)
® Follow the two-stage cycle finding scheme

® However, the tree-based path construction is too wasteful
(construct a fat tree, but ultimately uses one path)
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Tight error lower bound under exponential model

® Recall exponential model: d = n, P = exp(\), Q = exp(1/n)
® Follow the two-stage cycle finding scheme

® However, the tree-based path construction is too wasteful
(construct a fat tree, but ultimately uses one path)

Improved Path construction (exponential model)

@ Directly show the existence of many short augmenting alternating
paths using first and second moment method

@® Extract a large collection of vertex-disjoint paths via Turan's
Theorem

Follow the program in [Ding-Goswami '15] in a different context
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First and second moment under exponential model

® Log-likelihood weight log g(We) is scale-and-shift of —W:

Alternating path P is augmenting < wt,(P) > wt,(P)
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First and second moment under exponential model

® Log-likelihood weight log g(We) is scale-and-shift of —W:
Alternating path P is augmenting < wt,(P) > wt,(P)

® Separately control the total red and blue edge weights of P:

Wi (P) = 2 (P, wty(P) ~ 2;6 . b(P)|
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First and second moment under exponential model

® Log-likelihood weight log g(We) is scale-and-shift of —W:
Alternating path P is augmenting < wt,(P) > wt,(P)

® Separately control the total red and blue edge weights of P:

2 2—¢€
wi(P) & T HP)), wio(P) = = b(P)|
® Further need uniformity [Ding '13, Ding-Sun-Wilson'15] to reduce

correlations among different P:

1
Deviation of wt,(Q) and wtp(Q) in every subpath Q is O(ﬁ)
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First and second moment under exponential model

® Log-likelihood weight log g(We) is scale-and-shift of —W:
Alternating path P is augmenting < wt,(P) > wt,(P)

® Separately control the total red and blue edge weights of P:

2 2—¢€
wi(P) & T HP)), wio(P) = = b(P)|
® Further need uniformity [Ding '13, Ding-Sun-Wilson'15] to reduce

correlations among different P:

1
Deviation of wt,(Q) and wtp(Q) in every subpath Q is 0(7
€

® Let S, denote the set of such alternating paths of length ¢:

260(1/v2)
Var(|S]) < (E[|S[])> ———

Jiaming Xu (Duke) The Planted Matching Problem

)



Extract vertex-disjoint alternating paths via Turdn

® Define graph H
» Vertex: alternating path in S;
» Edge: if two alternating paths share common vertices

® Independent set < collection of vertex-disjoint alternating paths
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Extract vertex-disjoint alternating paths via Turdn

® Define graph H
» Vertex: alternating path in S;
» Edge: if two alternating paths share common vertices

® Independent set < collection of vertex-disjoint alternating paths

Turan’s Theorem

Let H = (V, E) be any simple graph. Then H contains an independent
subset of size at least |V/|2/(2|E| + |V]).
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Extract vertex-disjoint alternating paths via Turdn

® Define graph H
» Vertex: alternating path in S;
» Edge: if two alternating paths share common vertices

® Independent set < collection of vertex-disjoint alternating paths

Turan’s Theorem

Let H = (V, E) be any simple graph. Then H contains an independent
subset of size at least |V/|2/(2|E| + |V]).

e Apply Turén’'s Theorem with |V| =~ E[|S/|] and |E| ~ Var(|S/|)

= There exist Wnl/ﬁ) vertex-disjoint alternating paths of length £
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Extract vertex-disjoint alternating paths via Turdn

® Define graph H
» Vertex: alternating path in S;
» Edge: if two alternating paths share common vertices

® Independent set < collection of vertex-disjoint alternating paths

Turan’s Theorem

Let H = (V, E) be any simple graph. Then H contains an independent
subset of size at least |V/|2/(2|E| + |V]).

e Apply Turén’'s Theorem with |V| =~ E[|S/|] and |E| ~ Var(|S/|)
= There exist Wnl/ﬁ) vertex-disjoint alternating paths of length £

e Choose ¢ = €®(1/vV4) and get desired augmenting alternating cycles
of length ne=©(1/V9) via sprinkling
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Analysis

Proof of positive result via maximum likelihood
Proof of negative result via analyzing posterior distribution
Proof of tight error lower bound under exponential model

Proof of overlap of MLE under exponential model
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Exponential model

® A complete bipartite graph
® A hidden perfect matching M
® Edge weight

ind. {EXp()\) ec M
Exp(1/n) e¢ M

Minimum-weight matching My, is the Maximum Likelihood Estimator
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Warmup: the (un-planted) random assignment problem

@— =0

() @) ® A complete bipartite graph
® Weights are i.i.d. Exp(1/n)

() @) ® Cost of minimum matching?

@ @
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Warmup: the (un-planted) random assignment problem

@) ® A complete bipartite graph
® Weights are i.i.d. Exp(1/n)
@) ® Cost of minimum matching?

[Walkup'79, Mézard-Parisi’87, Steele’97, Aldous’01, Nair-Prabhakar-Sharma’05, Wastlund’'09]

PITIE S S N
N 4 9 n?2 "6

1
E in —
[A;"M 0 2 e
eeM
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Poisson-weighted infinite tree approximation

Cavity method: model as a tree [Mézard-Parisi '87, Aldous'00]

i B SN SN .
/ \ NI / \ -
/ | SN / | S
/ \ A N / \ S

sort edge weights Wy 1, Wy 2, ... from smallest to largest:
arrivals (1, (2, ... of a Poisson process with rate 1
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Poisson-weighted infinite tree approximation

Cavity method: model as a tree [Mézard-Parisi '87, Aldous'00]

i B SN SN .
/ \ NI / \ -
/ | SN / | S
/ \ A N / \ S

sort edge weights Wy 1, Wy 2, ... from smallest to largest:
arrivals (1, (2, ... of a Poisson process with rate 1

X, £ cost of min matching on T, — cost of min matching on T, \ {v}
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Poisson-weighted infinite tree approximation

Cavity method: model as a tree [Mézard-Parisi '87, Aldous'00]

i B SN SN .
/ \ NI / \ -
/ | SN / | S
/ \ A N / \ S

sort edge weights Wy 1, Wy 2, ... from smallest to largest:
arrivals (1, (2, ... of a Poisson process with rate 1

X, £ cost of min matching on T, — cost of min matching on T, \ {v}

Xg = min {Waz,;i — Xi}
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Poisson-weighted infinite tree approximation

Cavity method: model as a tree [Mézard-Parisi '87, Aldous'00]

i B SN SN .
/ \ NI / \ -
/ | SN / | S
/ \ A N / \ S

sort edge weights Wy 1, Wy 2, ... from smallest to largest:
arrivals (1, (2, ... of a Poisson process with rate 1

X, £ cost of min matching on T, — cost of min matching on T, \ {v}

. d .
Xg —fg?{Wz,i—Xi} = X = rl.nz'{‘{Ci—Xi}
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From distributional to differential equations

X < min {¢i — Xi} where (; are Poisson arrivals
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From distributional to differential equations

d . . .
X = min{¢; — X;} where (; are Poisson arrivals

Define the ccdf F(x) =1 — F(x) =P[X > x] =P[Vi: { — x > X]|

Jiaming Xu (Duke) The Planted Matching Problem 38



From distributional to differential equations

d . . .
X = min{¢; — X;} where (; are Poisson arrivals

Define the ccdf F(x) =1 — F(x) =P[X > x] =P[Vi: { — x > X]|
Generate pairs ({;, X;): two-dimensional Poisson process with density F’

+

4
° 5
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From distributional to differential equations

d . . .
X = min{¢; — X;} where (; are Poisson arrivals

Define the ccdf F(x) =1 — F(x) =P[X > x] =P[Vi: { — x > X]|
Generate pairs ({;, X;): two-dimensional Poisson process with density F’

+

4
° 5

F(x) = exp<— / = dt> = dZiX) = F(x)F(—x)

—X
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From distributional to differential equations, cont'd
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From distributional to differential equations, cont'd

SN SN i '\
SN PRI / \ \

. \ v \ v \ LY
| |

/ \ / \ / \ N

AR TN FAREEN / \ [N

Contribution of a single edge:
o0 , 1 | 72
wP[Z+Z' > wldw = ZVar[Z—i— Z' = §Var[Z] =%
0
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Planted poission-weighted infinite tree

Partner in planted matching is either parent or child 0,
other children sorted 1,2, 3, ...

X, £ cost of min matching in T, — cost of min matching on T, \ {v}
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Planted poission-weighted infinite tree

Partner in planted matching is either parent or child 0,
other children sorted 1,2, 3, ...

X, £ cost of min matching in T, — cost of min matching on T, \ {v}

Recursion:

Xz = min { W0 — Xo, m>l? Wi — Xi}}
I_

Xo = min {Wo,0i — Xoi}
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Planted poission-weighted infinite tree

Partner in planted matching is either parent or child 0,
other children sorted 1,2, 3, ...

X, £ cost of min matching in T, — cost of min matching on T, \ {v}

Recursion:

X@:min{ Wz 0 — Xo, m>i{1{W®7,-—X,-}} ngin{n—Z,Z’}

d .
Xo = m>|£1 {Wo}o,' - Xo,'} Z= mim {CI - Yl}
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From distributional to differential equations, redux

Y Lmin{n-2,2}
Z < min {G = Yitiz,

where 1 ~ Exp(\) and ¢; are Poisson arrivals
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From distributional to differential equations, redux

Y Lmin{n-2,2}
Z < min {G = Yitiz,

where 1 ~ Exp(\) and ¢; are Poisson arrivals
F(x) =P[Z < x], G(x) = F(—x), V(x) = E[F(x + 7n)], W(x) = V(—x)
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From distributional to differential equations, redux

Y Lmin{n-2,2}
Z < min {G = Yitiz,

where 1 ~ Exp(\) and ¢; are Poisson arrivals
F(x) =P[Z < x], G(x) = F(—x), V(x) = E[F(x + )|, W(x) = V(—x)
F=(1-F)(1-G)V
G=—(1-F)(1-G6)W
V=AV-F)

W =-\W - G)
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From distributional to differential equations, redux

Y Lmin{n-2,2}
Z < min {G = Yitiz,

where 1 ~ Exp(\) and ¢; are Poisson arrivals
F(x) =P[Z < x], G(x) = F(—x), V(x) = E[F(x + )|, W(x) = V(—x)
F=(1-F)(1-G)V
G=—(1-F)(1-G6)W
V=AV-F)

W =-\W - G)

V and W from 5 ~ Exp()), integration by parts
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From distributional to differential equations, redux

Y Lmin{n-2,2}
Z < min {G = Yitiz,

where 1 ~ Exp(\) and ¢; are Poisson arrivals

F(x) =P[Z < x], G(x) = F(—x), V(x) = E[F(x + )|, W(x) = V(—x)

F=(1-F)(1-G)V
G=—(1-F)(1-G6)W
V=AV-F)
W =-\W - G)

V and W from 5 ~ Exp()), integration by parts

Boundary conditions:  F(x), V(x), G(—x), W(—x) — {

Jiaming Xu (Duke) The Planted Matching Problem
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Phase transition of ODE at A = 4

F=(1-F)(1-G)V
G=—(1-F)1-G6)W
V=XV -F)

W =-\W - G)
Boundary conditions:  F(x), V(x), G(—x), W(—x) — {

1 x— +
0 x— —©

There is a unique solution if and only if A < 4.
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No solution for A > 4

At least no sensible one. ..

Jiaming Xu (Duke) The Planted Matching Problem 43



No solution for A > 4

At least no sensible one. ..
Want F(+00) = V(4+00) = 1. But...

F(x), V()
1.0t
0.8
0.6/
0.4/

0.2

00 05 10 15 20 25 30"
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No solution for A > 4

Conservation law: FW + GV — VW =0 = V/(0) = 2F(0)
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No solution for A > 4

Conservation law: FW + GV — VW =0 = V/(0) = 2F(0)
Let U(x) = F(x)/V(x). Then U(0) = 1/2, want U(+o0) =1...

F(x), V(x), U(x)
e
0.8
0.6
04
0.2

00 05 1.0 15 20 25 30
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No solution for A > 4

Conservation law: FW + GV — VW =0 = V/(0) = 2F(0)

Let U(x) = F(x)/V(x).

Then U(0) =1/2, want U(+o0) =1...

F(x), V(x), U(x)

1.0
0.8
0.6
0.4
0.2

0

0 05 10 15 20 25 30

U=-AU1-U)+(1-F)(1-G)<-AU1-U)+1
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No solution for A > 4

Conservation law: FW + GV — VW =0 = V/(0) = 2F(0)

Let U(x) = F(x)/V(x).

Then U(0) =1/2, want U(+o0) =1...

F(x), V(x), U(x)

1.0
0.8
0.6
0.4
0.2

0

0 05 10 15 20 25 30

U=-MU1-U)+(1-F)(1-G)< - U1-U)+1
If A >4, U(1/2) <0 = U(x) can never exceed 1/2
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A unique solution when \ < 4

(F,G,V,W) < (U, V,W): three-dimensional dynamical system

U=-\U1-U)+(1-UV)(1-(1-U)W)
V =AV(1-U)

W = xwu

Initial conditions: U(0) = % V(0) = W(0) = §
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A unique solution when \ < 4

(F,G,V,W) < (U, V,W): three-dimensional dynamical system

U=-\U1-U)+(1-UV)(1-(1-U)W)
V =AV(1-U)
W = xwu

Initial conditions: U(0) = % V(0) = W(0) = §

Lemma (Moharrami-Moore-X. '19)

If X < 4, there is a unique oo € (0,1) such that
® If§€]0,d), Ulx) = +o0
® Ifo=2do, Ux) = 1and V(x) =1
® Ifd e (do,1], V(x) = 40
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Geometric interpretation of uniqueness

When A <4, (F=1,6=0,V =1, W =0) is a saddle point:
There exists a unique initial condition from which we approach the saddle
along its unstable manifold

V(x)
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Finally, computing the overlap for A < 4
m i . .

SO0 GO0 00O 300
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Finally, computing the overlap for A < 4

elele OOO O O ele
+oo
a()\):IP’[n<Z+Z']:1En/_ f(x)F(n— x)dx

+oo

:1—/_ f(x)E,F(n — x) dx
foo

=1- /_ (1—-F(x))(1—G(x))V(x)W(x)dx
oo+oo

=1- 2/0 (1—-F(x))(1—G(x))V(x)W(x)dx

Jiaming Xu (Duke) The Planted Matching Problem



Proving it: Local weak convergence (Aldous 1992, 2001)

® Construct a spatially invariant My, on Too using message passing
® Show (Kpn n, Mimin) converges locally to ( Too, Mopt)

» Local treelikeness of light edges
»  Almost-doubly-stochastic matrix
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Conclusion

Sharp threshold for almost perfect recovery: v/d B(P, Q) = 1

Infinite-order phase transition under the exponential model: Optimal
reconstruction error is exp (—©(1//¢)) when A =4 — ¢

Key idea: two-stage cycle finding (path construction + sprinkling)
Characterization of overlap of MLE by system of ODEs
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Conclusion

e Sharp threshold for almost perfect recovery: v/d B(P, Q) = 1

® |nfinite-order phase transition under the exponential model: Optimal
reconstruction error is exp (—©(1//¢)) when A =4 — ¢

¢ Key idea: two-stage cycle finding (path construction + sprinkling)
® Characterization of overlap of MLE by system of ODEs
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Open problems

@ Optimal error for general distributions? in entire parameter range?
Interpolation method [Coja-Oghlan-Krzakala-Perkins-Zdeborova '18]7

® Extension to planted k-factor model
Conjecture: v kd B(P, Q) = 1 [Sicuro-Zdeborova "20]

© Extension to k-hypergraphs [Adomaityte-Toshniwal-Sicuro-Zdeborova '22]
Observe first-order phase transition when k > 2

O Finite-dimensional Euclidean space? [Kunisky-Niles-Weed '22]
@ Planted feature matching [Dai-Cullina-Kiyavash '19, Wang-Wu-X.-Yolou '22]

@ Other planted structures: spanning trees, traveling
salespeople [Bagaria-Ding-Tse-Wu-X. '18]7?
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