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Statistical model with planted structure

Question: How to recover latent structure from noisy data?

Classical examples

• Recovery of planted clique in Erdős-Rényi graphs

• Community detection under Stochastic Block Model

• Clustering in mixture models

Common theme: low-rank structure
• Underpinning of many phase transitions and algorithms, e.g. spectral

method, SDP relaxation, etc
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A new zoo of planted problems...

• Planted bipartite matching [Chertkov-Kroc-Krzakala-Vergassola-Zdeborová ’10]

• Graph matching (network alignment) [Pedarsani-Grossglauser ’11]

• Planted Hamiltonian cycle problem (TSP) [Bagaria-Ding-Tse-W-Xu ’18]

• Planted trees [Massoulié-Stephan-Towsley ’18]

• Planted k-factors [Sicuro-Zdeborová ’20]

• Planted k-nearest-neighbor graph [Ding-Wu-Xu-Yang ’19]

Common theme: Lack of low-rank structure ⇒ new challenges in both
statistical analysis and algorithm design

This tutorial:

• Linear assignment: Planted bipartite matching

• Quadratic assignment: Graph matching (network alignment)
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• Graph matching (network alignment) [Pedarsani-Grossglauser ’11]

• Planted Hamiltonian cycle problem (TSP) [Bagaria-Ding-Tse-W-Xu ’18]

• Planted trees [Massoulié-Stephan-Towsley ’18]
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Outline of tutorial

• Lecture 1: Planted matching problem

• Lecture 2: Random graph matching: Information-theoretic limits

• Lecture 3: Random graph matching: Efficient algorithms

• Lecture 4: Random graph matching: Low-degree polynomials and
limits of local algorithms
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Assignment problems in operations research

Assignment problems were introduced for facilities location problem by
[Koopmans-Beckmann Econometrica ’57]
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The planted matching model

• A weighted bipartite graph G

• A hidden perfect matching M∗

• All n(n − 1) pairs not in M∗ are
connected w.p. d

n

• Edge weight

We
ind.∼
{
P e ∈ M∗

Q e /∈ M∗

• Goal: recover M∗ from G
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Motivating application: particle tracking

[Chertkov-Kroc-Krzakala-Vergassola-Zdeborová PNAS’10]

• Tracking particles advected by turbulent fluid flow

• Goal: recover the latent correspondence between particles

• d = n, P = |N (0, κ)| and Q = Uniform[0, n]
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Motivating application: particle tracking
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FIG. 3: A realization of a 2-dimensional flow with a∗ = b∗ = c∗ = 1, κ∗ = 0.5 and N = 200 particles. Left: The BP Bethe
free energy as a function of the diffusivity κ and the shear b, where every point is obtained by minimizing with respect to the
stretching a and the vorticity c of the flow. Right: The same free energy in a contour plot, showing the maximum close to
b = 1 and κ = 0.5. The maximum is achieved for aBP = 1.148(1) bBP = 1.026(1) cBP = 0.945(1), κBP = 0.509(1), where the
parentheses indicates numerical error on the third digit.

random variables drawn uniformly in the interval (0, N). Units of length are chosen so that the typical interparticle

distance is set to unity. Note that any distribution of dji for j 6= π∗
i with a vanishing derivative at the origin would

give the same solution. Indeed, the crucial property is that, for each particle i, the number of distances dji that are

comparable with the diffusion length scale
√
κ∗ is O(1).

The interest of a special permutation π∗ is that we can inquire about : learning κ∗ if π∗ is supposed unknown; the
relevance of entropic factors for the partition function; and the status of the BP approximation. The same questions
arise for (2) in the original problem. Note that if there were no special permutation, then we would obtain the
random-link model considered in [22–24]. Our “random distance” model can be solved exactly in the thermodynamic
limit using the replica method, as in [22, 23], or using the cavity method, as in [24]. The main result (see SI) is that
the BP expression of the free energy for the “random distance” model is exact in the limit N → ∞, despite of the
short loops in the graph of the model. The argument to prove this result goes as follows : (a) the contribution to the
partition function (2) from those permutations of the j indices that contain distances larger than O(1) is negligible;
(b) as each node has only a fraction O(1) of its N distances being O(1), the underlying graph is effectively sparse;
(c) because sparse graphs are locally tree-like and correlations in the matching problem decay very fast on trees, it
follows that the BP approximation is exact in the thermodynamic limit. We have formalized these statements within
the replica and cavity methods (and rigorous local weak convergence methods are probably also applicable, as for the
random link model [25]).
The asymptotic exactness found in the “random distance” model means that errors made by BP are caused by

correlations among the inter-particle distances. In a smooth flow (see the sequel) particles close to each other in the
first image will also be near each other in the second image; moreover, the four distances among the two positions
in the first image and the two positions in the second will also be small, or more generally correlated. This effect is
more important in lower dimensions. Indeed, BP inferences turn out to be better in the three-dimensional (3D) case
than in 2D and rather inaccurate in 1D (with maximum relative error about 60%).
Our replica calculations also show that the “random distance” model presents an interesting phase transition at the

diffusivity κc ≈ 0.174. For κ∗ < κc, the MPA πMPA is identical to the special one π∗ with high probability, whereas
for κ∗ > κc the overlap (defined via the Hamming distance) between the most likely assignment πMPA and the special
one π∗ is extensive, i.e., O(N). The comparison with the finite-dimensional case is discussed in the Results section.

[Chertkov-Kroc-Krzakala-Vergassola-Zdeborová PNAS’10]

• Tracking particles advected by turbulent fluid flow

• Goal: recover latent correspondence between particles based on
pairwise distances

• d = n, P = |N (0, κ)| and Q = Uniform[0, n].

• Optimal κ turns out to be 1
2π ≈ 0.159
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Maximum likelihood estimation as linear assignment

Maximum likelihood estimation reduces to max-weighted matching:

M̂ML = arg max
M∈M

∑
e∈M

log
P

Q
(We)

• Linear assignment: computable in polynomial time

• For certain distributions e.g. exponentials, further reduce to
min-weighted matching in terms of We

• How much does M̂ML have in common with M∗?

overlap(M̂ML,M
∗) ,

1

n
E
∣∣∣M̂ML ∩M∗

∣∣∣ = 1− 1

2n
E
∣∣∣M̂ML4M∗

∣∣∣
• Information-theoretic limit for reconstruction, in terms of

1 Average degree d
2 Similarity between P and Q

• Bhattacharyya coefficient (Hellinger affinity) B(P,Q) ,
∫ √

dPdQ
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Main result: phase transition threshold

Theorem (Ding-Wu-X.-Yang ’21)

• If
√
d B(P,Q) ≤ 1, then overlap(M̂ML,M

∗)→ 1

• If
√
d B(P,Q) ≥ 1 + ε, then for all M̂ and some c = c(ε)

overlap(M̂,M∗) ≤ 1− c

for both
I sparse model: d ,P,Q fixed; and
I dense model: d →∞ and Q(x) = 1

d ρ( x
d ).

• Resolve the conjecture in [Semerjian-Sicuro-Zdeborová ’20]
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Some interesting special cases

• Unweighted model: P = Q,

Sharp threshold d = 1

Coincide with the threshold for emergence of giant component

• Particle tracking: d = n, P = |N (0, κ)|, Q = Uniform[0, n]:

Sharp threshold κ =
1

2π

• Exponential model: d = n, P = exp(λ), Q = exp(1/n):

Sharp threshold λ = 4
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Infinite-order phase transition under exponential model

Theorem (Ding-Wu-X.-Yang ’21)

Assume λ = 4− ε. There exist absolute constants c1, c2:

overlap(M̂ML,M
∗) ≥ 1− e

− c1√
ε ;

Conversely, for all M̂,

overlap(M̂,M∗) ≤ 1− e
− c2√

ε .

• Optimal reconstruction error is exp (−Θ(1/
√
ε))

• Resolve the ∞-order phase transition
conjecture [Semerjian-Sicuro-Zdeborová ’20]
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Overlap of MLE under exponential model

Theorem (Moharrami-Moore-X. ’19)

lim
n→∞

overlap(M̂ML,M
∗) = α(λ), if 0 < λ < 4,

where α(λ) = 1− 2
∫∞

0 (1− F (x)) (1− G (x))V (x)W (x) dx ,

1 2 3 4
λ

0.2

0.4

0.6

0.8

1.0

overlap α(λ)

α(λ) is infinitely differentiable at threshold λ = 4!
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Comparison of phase transition orders

Drastically different from the other well-known planted models such as
stochastic block model (conjecture, not fully proven yet)

(" − $)&
2(" + $)

1
Overlap

0 1

Second-order phase transition
with two groups

[DKMZ’11, MNS’12 13, Massoulié’13]

1
Overlap

0 (" − $)&
+(" + (+ − 1)$)Θ log +

+

+ ≥ 5

First-order phase transition
with five or more groups

[DKMZ’11, BMNN ’16, AS’16]

Aside: A phase transition is of pth order if the (p − 2)th derivative of the
average overlap is continuous
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Comparison of phase transition orders

Spiked Wigner model: Y = x0x
>
0 + Z , x0 is εn-sparse [Deshpande-Montanari

’14, Krzakala-X.-Zdeborová ’16, Barbier et al ’16, Lelarge-Miolane ’16,

Montanari-Venkataramanan ’17]
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Figure 1: Estimation in the single spiked model (2.1) with entries of x0 following the two-points
distribution of Eq. (2.33), and four different values of the sparsity ε ∈ {0.025, 0.05, 0.25, 0.5}.
Continuous thick blue line: asymptotic accuracy achieved by AMP (with spectral initialization).
Red circles: numerical simulations with the AMP algorithm (form matrices of dimension n = 2000
and t = 200 iterations). Continuous thin blue line: Bayes optimal estimation accuracy. Dashed
blue line: other fixed points of state evolution. Red line: Accuracy achieved by principal component
analysis. Vertical dashed black lines: the thresholds λIT and λALG.

For ε small enough, there exists λ0(ε) < 1 such that Eq. (2.24) has three fixed points for
λ ∈ (λ0(ε), 1): γ0(λ) < γ1(λ) < γ2(λ) whereby γ0 = 0 and γ2 are stable and γ1 is unstable. AMP
is controlled by the smallest stable fixed point, and hence γALG(λ) = 0 for all λ < 1. On the other
hand, by minimizing the free energy (2.31) over these fixed points, we obtain that there exists
λIT(ε) ∈ (λ0(ε), 1) such that γBayes(λ) = 0 for λ < λIT(ε) while γBayes(λ) = γ2(λ) for λ > λIT(ε).
We conclude that AMP is asymptotically sub-optimal for λ ∈ (λIT(ε), 1), while it is asymptotically
optimal for λ ∈ [0, λIT(ε)) and λ ∈ (1,∞).
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Figure 1: Estimation in the single spiked model (2.1) with entries of x0 following the two-points
distribution of Eq. (2.33), and four different values of the sparsity ε ∈ {0.025, 0.05, 0.25, 0.5}.
Continuous thick blue line: asymptotic accuracy achieved by AMP (with spectral initialization).
Red circles: numerical simulations with the AMP algorithm (form matrices of dimension n = 2000
and t = 200 iterations). Continuous thin blue line: Bayes optimal estimation accuracy. Dashed
blue line: other fixed points of state evolution. Red line: Accuracy achieved by principal component
analysis. Vertical dashed black lines: the thresholds λIT and λALG.
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is controlled by the smallest stable fixed point, and hence γALG(λ) = 0 for all λ < 1. On the other
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First-order phase transition

Figure from [Montanari-Venkataramanan ’17]
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Finite-order phase transition for unweighted model

• For unweighted model with d = 1 + ε,

ε8 . inf
M̂

1

n
E
∣∣∣M̂4M∗

∣∣∣ . ε.

Thus the phase transition is continuous, and is of finite order.

• Determining the exact order of the phase transition for unweighted
model is an open problem

Jiaming Xu (Duke) The Planted Matching Problem 16



Analysis

• Proof of positive result via maximum likelihood

• Proof of negative result via analyzing posterior distribution

• Proof of tight error lower bound under exponential model

• Proof of overlap of MLE under exponential model

Jiaming Xu (Duke) The Planted Matching Problem 17



Proof of positive result via maximum likelihood

• At most
(n
t

)
t! matchings M with |M4M∗| = 2t

• Probability that M has higher likelihood than M∗ is

P

 ∑
e∈M\M∗

log
P
Q(We) ≥

∑
e∈M∗\M

log
P
Q(We)

 ≤
(
d

n
B2(P,Q)

)t

• Taking union bound ⇒

P [∃ M with |M4M∗| ≥ 2βn has higher likelihood than M∗]

≤
∑
t≥βn

(
n

t

)
t!

(
d

n
B2(P,Q)

)t

→ 0 for some β = o(1), if
√
d B(P,Q) ≤ 1

Aside: If
√
dB(P,Q)→ 0, then MML = M∗ whp
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Analysis

• Proof of positive result via maximum likelihood

• Proof of negative result via analyzing posterior distribution

• Proof of tight error lower bound under exponential model

• Proof of overlap of MLE under exponential model
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Negative result via analyzing posterior distribution

• ...But MLE does not maximize overlap

• Optimal estimator is maximum posterior marginal

• Need to analyze posterior distribution: Gibbs distribution over
perfect matchings

µW (m) ∝ exp

(∑
e∈m

log
P
Q(We)

)

Crucial observation

Sampling from posterior distribution is optimal within a factor of two.

Proof: Let M̃ be sampled from posterior distribution. Then for any

estimator M̂, (M∗, M̂)
law
= (M̃, M̂) and

E|M̃4M∗| ≤ E|M̃4M̂|+ E|M̂4M∗| = 2E|M̂4M∗|.
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Analysis of posterior distribution

M∗δn

••

•
•

•

•

•

•

•

••

••

•

••

•
•

•

•

• •

•

•

•

•

•

•

•
•
••

•

•
•

•

•

•

•

•

• Upper bound the posterior mass of
matchings near M∗:

µW (Mnear)

µW (M∗)
≤ e7εδn (1)

• Lower bound the posterior mass of
matchings far away from M∗:

µW (Mfar)

µW (M∗)
≥ e14εδn (2)

• Proof of (1) is straightforward: truncated first moment

• Proof of (2) is constructive: find exponentially many matchings
M ∈Mfar whose likelihood exceeds that of M∗
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Lower bound: Augmenting alternating cycles

For perfect matching M, M4M∗ = disjoint union of alternating cycles

1

2

3

4

1′

2′

3′

4′

M

M∗

1 2′

2

3′3

1′

M∗4M

Goal: Find exponentially many long alternating cycles C that are
augmenting: ∑

e∈Eblue(C)

log
P
Q(We) ≥

∑
e∈Ered(C)

log
P
Q(We).

• Augmenting alternating cycles are rare; but there are many
alternating cycles
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Failure of second-moment in counting alternating cycles

Natural attempt: first and second moment method.

• Let S be the set of augmenting alternating cycles in G of length at
least cn. Then E|S | = eΩ(n).

• If E(|S |2) . (E|S |)2, then |S | = eΩ(n) with constant probability.

• However, E(|S |2)� (E|S |)2 due to the excessive correlation
between long cycles.

Key idea

First find many disjoint short paths, then connect the paths into long
cycles [Aldous ’98, Ding ’13, ...]
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Existence of many long augmenting alternating cycles

Two-stage cycle-finding scheme

Reserve a set V of γn vertices for some small γ > 0.

1 Stage 1 (path construction): Find Θ(n) disjoint short (constant
length) augmenting alternating paths, using vertices in V c .

2 Stage 2 (sprinkling): Connect the paths into long cycles, using
vertices in V .

Caution: need to ensure alternating colors in sprinking
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Two-stage cycle-finding scheme

Stage 1 (path construction): Find {Lk ,Rk}Kk=1 for K = Ω(n) such
that every vertex in Lk is connected to every vertex in Rk via an
augmenting alternating path (length = large constant)

L1 ⊂ V c

L2 ⊂ V c

L3 ⊂ V c

LK ⊂ V c

R1 ⊂ (V c )′

R2 ⊂ (V c )′

R3 ⊂ (V c )′

RK ⊂ (V c )′
...

...

Jiaming Xu (Duke) The Planted Matching Problem 25



Two-stage cycle-finding scheme

Stage 2 (sprinkling):

1 Let U ′k be set of reserved vertices connecting to Lk
Let Vk be set of reserved vertices connecting to Rk

2 Find blue edges connecting {Uk}, {V ′k}.

L1

L2

R1

R2

P1

P2

U′1 V1

U′2 V2

U1

U2

V ′1

V ′2
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Two-stage cycle-finding scheme

Super graph: Define Gsuper on [K ]× [K ]′, such that (k , k ′) is a red edge
for all k, and (i , j ′) is a blue edge iff Ui and V ′j is connected by at least
one blue edge.

L1

U′1

U1

L2

U′2

U2

R1

V1

V ′1

R2

V2

V ′2

P1

P2
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Two-stage cycle-finding scheme

Super graph: Define Gsuper on [K ]× [K ]′, such that (k , k ′) is a red edge
for all k, and (i , j ′) is a blue edge iff Ui and V ′j is connected by at least
one blue edge.

1

2

1′

2′

1 Each alternating cycle on Gsuper expands into an augmenting
alternating cycle in G

2 Gsuper is a very supercritical Erdős-Rényi bipartite graph with a
planted perfect matching

3 Gsuper contains eΩ(K) = eΩ(n) alternating cycles of length
Ω(K ) = Ω(n) (standard DFS argument [Krivelevich-Lee-Sudakov ’13])
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planted perfect matching

3 Gsuper contains eΩ(K) = eΩ(n) alternating cycles of length
Ω(K ) = Ω(n) (standard DFS argument [Krivelevich-Lee-Sudakov ’13])

Jiaming Xu (Duke) The Planted Matching Problem 28



Two-stage cycle-finding scheme

Super graph: Define Gsuper on [K ]× [K ]′, such that (k , k ′) is a red edge
for all k, and (i , j ′) is a blue edge iff Ui and V ′j is connected by at least
one blue edge.

1

2

1′

2′

1 Each alternating cycle on Gsuper expands into an augmenting
alternating cycle in G

2 Gsuper is a very supercritical Erdős-Rényi bipartite graph with a
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Path construction via neighborhood exploration process

Two-sided tree:

ik i ′k

Lk Rk

Starting from ik , grow a tree, remove the inspected vertices, and then
grow another tree from i ′k

Key challenge

How to ensure large Lk ,Rk connected via augmenting alternating paths.
while not using up too many vertices?
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Exploration + selection

ik

...

• Explore via BFS in epochs,
each epoch has H steps

• At the end of each epoch,
select leaves whose paths to
root are augmenting and
continue growing

• Behaves as a branching process
with average number of

offsprings
(
dB2(P,Q)

)H
> 1
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Tight error lower bound under exponential model

• Recall exponential model: d = n, P = exp(λ), Q = exp(1/n)

• Follow the two-stage cycle finding scheme

• However, the tree-based path construction is too wasteful
(construct a fat tree, but ultimately uses one path)

Improved Path construction (exponential model)

1 Directly show the existence of many short augmenting alternating
paths using first and second moment method

2 Extract a large collection of vertex-disjoint paths via Turán’s
Theorem

Follow the program in [Ding-Goswami ’15] in a different context
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First and second moment under exponential model

• Log-likelihood weight log PQ(We) is scale-and-shift of −We :

Alternating path P is augmenting ⇔ wtr(P) ≥ wtb(P)

• Separately control the total red and blue edge weights of P:

wtr(P) ≈ 2

λ
· |r(P)|, wtb(P) ≈ 2− ε

λ
· |b(P)|

• Further need uniformity [Ding ’13, Ding-Sun-Wilson’15] to reduce
correlations among different P:

Deviation of wtr(Q) and wtb(Q) in every subpath Q is O(
1√
ε

)

• Let S` denote the set of such alternating paths of length `:
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Extract vertex-disjoint alternating paths via Turán

• Define graph H
I Vertex: alternating path in S`
I Edge: if two alternating paths share common vertices

• Independent set ⇔ collection of vertex-disjoint alternating paths

Turán’s Theorem

Let H = (V ,E ) be any simple graph. Then H contains an independent
subset of size at least |V |2/(2|E |+ |V |).

• Apply Turán’s Theorem with |V | ≈ E[|S`|] and |E | ≈ Var(|S`|)

⇒ There exist
n

`2eΘ(1/
√
ε)

vertex-disjoint alternating paths of length `

• Choose ` = eΘ(1/
√
ε) and get desired augmenting alternating cycles

of length ne−Θ(1/
√
ε) via sprinkling
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Analysis

• Proof of positive result via maximum likelihood

• Proof of negative result via analyzing posterior distribution

• Proof of tight error lower bound under exponential model

• Proof of overlap of MLE under exponential model
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Exponential model

• A complete bipartite graph

• A hidden perfect matching M

• Edge weight

Wij
ind.∼
{

Exp(λ) e ∈ M

Exp(1/n) e /∈ M

Minimum-weight matching Mmin is the Maximum Likelihood Estimator

Jiaming Xu (Duke) The Planted Matching Problem 35



Warmup: the (un-planted) random assignment problem

• A complete bipartite graph

• Weights are i.i.d. Exp(1/n)

• Cost of minimum matching?

[Walkup’79, Mézard-Parisi’87, Steele’97, Aldous’01, Nair-Prabhakar-Sharma’05, Wästlund’09]

E

[
min
M∈M

1

n

∑
e∈M

We

]
= 1 +

1

4
+

1

9
+ · · ·+ 1

n2
→ π2

6
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Poisson-weighted infinite tree approximation

Cavity method: model as a tree [Mézard-Parisi ’87, Aldous’00]

Ø

1 2 3 4

11 12 13 21 22 23 31 32 33 41 42 43

ζ2 ζ3 ζ4ζ1

sort edge weights W∅,1,W∅,2, . . . from smallest to largest:
arrivals ζ1, ζ2, . . . of a Poisson process with rate 1

Xv , cost of min matching on Tv − cost of min matching on Tv \ {v}

X∅ = min
i≥1
{W∅,i − Xi}

=⇒ X
d
= min

i≥1
{ζi − Xi}
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From distributional to differential equations

X
d
= min {ζi − Xi} where ζi are Poisson arrivals

Define the ccdf F̄ (x) = 1− F (x) = P [X > x ] = P [∀i : ζi − x > Xi ]
Generate pairs (ζi ,Xi ): two-dimensional Poisson process with density F ′

X

ζ
ζ–x
=X

F̄ (x) = exp

(
−
∫ ∞
−x

F̄ (t) dt

)
⇒ dF (x)

dx
= F (x)F (−x)
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From distributional to differential equations, cont’d

dF (x)

dx
= F (x)F (−x) =⇒ F (x) =

ex

1 + ex

vs. Z Z´

W

Contribution of a single edge:∫ ∞
0

wP
[
Z + Z ′ ≥ w

]
dw =

1

4
Var[Z + Z ′] =

1

2
Var[Z ] =

π2

6
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Planted poission-weighted infinite tree

Partner in planted matching is either parent or child 0,
other children sorted 1, 2, 3, . . .

Ø

0 1 2 3

01 02 03 10 11 12 20 21 22 30 31 32

ζ1 ζ2 ζ3η

Xv , cost of min matching in Tv − cost of min matching on Tv \ {v}

Recursion:

X∅ = min

{
W∅,0 − X0, min

i≥1
{W∅,i − Xi}

}
X0 = min

i≥1
{W0,0i − X0i}

Y
d
= min

{
η − Z ,Z ′

}
Z

d
= min

i
{ζi − Yi}

Jiaming Xu (Duke) The Planted Matching Problem 40



Planted poission-weighted infinite tree

Partner in planted matching is either parent or child 0,
other children sorted 1, 2, 3, . . .

Ø

0 1 2 3

01 02 03 10 11 12 20 21 22 30 31 32

ζ1 ζ2 ζ3η

Xv , cost of min matching in Tv − cost of min matching on Tv \ {v}
Recursion:

X∅ = min

{
W∅,0 − X0, min

i≥1
{W∅,i − Xi}

}
X0 = min

i≥1
{W0,0i − X0i}

Y
d
= min

{
η − Z ,Z ′

}
Z

d
= min

i
{ζi − Yi}

Jiaming Xu (Duke) The Planted Matching Problem 40



Planted poission-weighted infinite tree

Partner in planted matching is either parent or child 0,
other children sorted 1, 2, 3, . . .

Ø

0 1 2 3

01 02 03 10 11 12 20 21 22 30 31 32

ζ1 ζ2 ζ3η

Xv , cost of min matching in Tv − cost of min matching on Tv \ {v}
Recursion:

X∅ = min

{
W∅,0 − X0, min

i≥1
{W∅,i − Xi}

}
X0 = min

i≥1
{W0,0i − X0i}

Y
d
= min

{
η − Z ,Z ′

}
Z

d
= min

i
{ζi − Yi}

Jiaming Xu (Duke) The Planted Matching Problem 40



From distributional to differential equations, redux

Y
d
= min

{
η − Z ,Z ′

}
Z

d
= min {ζi − Yi}∞i=1

where η ∼ Exp(λ) and ζi are Poisson arrivals

F (x) = P [Z < x ],G (x) = F (−x),V (x) = E[F (x + η)] ,W (x) = V (−x)

Ḟ = (1− F )(1− G )V

Ġ = −(1− F )(1− G )W

V̇ = λ(V − F )

Ẇ = −λ(W − G )

V̇ and Ẇ from η ∼ Exp(λ), integration by parts

Boundary conditions: F (x),V (x),G (−x),W (−x)→
{

1 x → +∞
0 x → −∞
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Ḟ = (1− F )(1− G )V
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V̇ and Ẇ from η ∼ Exp(λ), integration by parts

Boundary conditions: F (x),V (x),G (−x),W (−x)→
{

1 x → +∞
0 x → −∞

Jiaming Xu (Duke) The Planted Matching Problem 41



Phase transition of ODE at λ = 4

Ḟ = (1− F )(1− G )V

Ġ = −(1− F )(1− G )W

V̇ = λ(V − F )

Ẇ = −λ(W − G )

Boundary conditions: F (x),V (x),G (−x),W (−x)→
{

1 x → +∞
0 x → −∞

Lemma

There is a unique solution if and only if λ < 4.
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No solution for λ ≥ 4

At least no sensible one. . .

Want F (+∞) = V (+∞) = 1. But. . .

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.2

0.4

0.6

0.8

1.0

F(x), V(x)
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No solution for λ ≥ 4

Conservation law: FW + GV − VW = 0 ⇒ V (0) = 2F (0)

Let U(x) = F (x)/V (x). Then U(0) = 1/2, want U(+∞) = 1. . .

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.2

0.4

0.6

0.8

1.0

F(x), V(x), U(x)

U̇ = −λU(1− U) + (1− F )(1− G ) ≤ −λU(1− U) + 1

If λ ≥ 4, U̇(1/2) ≤ 0 =⇒ U(x) can never exceed 1/2
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A unique solution when λ < 4

(F ,G ,V ,W )⇐⇒ (U,V ,W ): three-dimensional dynamical system

U̇ = −λU(1− U) + (1− UV ) (1− (1− U)W )

V̇ = λV (1− U)

Ẇ = λWU

Initial conditions: U(0) =
1

2
,V (0) = W (0) = δ

Lemma (Moharrami-Moore-X. ’19)

If λ < 4, there is a unique δ0 ∈ (0, 1) such that

• If δ ∈ [0, δ0), U(x)→ +∞
• If δ = δ0, U(x)→ 1 and V (x)→ 1

• If δ ∈ (δ0, 1], V (x)→ +∞
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Geometric interpretation of uniqueness

When λ < 4, (F = 1,G = 0,V = 1,W = 0) is a saddle point:
There exists a unique initial condition from which we approach the saddle
along its unstable manifold

0 1 2 3 4 5 6 7
x

1

V(x)
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Finally, computing the overlap for λ < 4

vs.

η

Z Z´

α(λ) = P
[
η < Z + Z ′

]
= 1− Eη

∫ +∞

−∞
f (x)F (η − x) dx

= 1−
∫ +∞

−∞
f (x)EηF (η − x) dx

= 1−
∫ +∞

−∞
(1− F (x))(1− G (x))V (x)W (x) dx

= 1− 2

∫ +∞

0
(1− F (x))(1− G (x))V (x)W (x) dx
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Proving it: Local weak convergence (Aldous 1992, 2001)

Ø

• Construct a spatially invariant Mopt on T∞ using message passing
• Show (Kn,n,Mmin) converges locally to (T∞,Mopt)

I Local treelikeness of light edges
I Almost-doubly-stochastic matrix
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Conclusion

• Sharp threshold for almost perfect recovery:
√
d B(P,Q) = 1

• Infinite-order phase transition under the exponential model: Optimal
reconstruction error is exp (−Θ(1/

√
ε)) when λ = 4− ε

• Key idea: two-stage cycle finding (path construction + sprinkling)

• Characterization of overlap of MLE by system of ODEs

Reference
• M. Moharrami, C. Moore, & J. Xu, The planted matching problem: Phase

transitions and exact results. Annals of Applied Probability, 2021.

• J. Ding, Y. Wu, J. Xu, & D. Yang, The planted matching problem: Sharp
threshold and infinite-order phase transition. arXiv:2103.09383.
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Open problems

1 Optimal error for general distributions? in entire parameter range?
Interpolation method [Coja-Oghlan-Krzakala-Perkins-Zdeborová ’18]?

2 Extension to planted k-factor model
Conjecture:

√
kd B(P,Q) = 1 [Sicuro-Zdeborová ’20]

3 Extension to k-hypergraphs [Adomaityte-Toshniwal-Sicuro-Zdeborová ’22]

Observe first-order phase transition when k > 2

4 Finite-dimensional Euclidean space? [Kunisky-Niles-Weed ’22]

5 Planted feature matching [Dai-Cullina-Kiyavash ’19, Wang-Wu-X.-Yolou ’22]

6 Other planted structures: spanning trees, traveling
salespeople [Bagaria-Ding-Tse-Wu-X. ’18]?
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