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Graph matching (network alignment)

Goal: find a mapping between two node sets that maximally aligns the
edges (i.e. minimizes # of adjacency disagreements)
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Graph matching (network alignment)

Goal: find a mapping between two node sets that maximally aligns the
edges (i.e. minimizes # of adjacency disagreements)
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Graph matching (network alignment)

Goal: find a mapping between two node sets that maximally aligns the
edges (i.e. minimizes # of adjacency disagreements)

Quadratic Assignment Problem (QAP) : g%igAijBﬁ(i)ﬂ(j)
i<j

Noiseless case: reduce to graph isomorphism
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Application 1: Network de-anonymization

Linked [T}

® Successfully de-anonymize Netflix dataset by matching it to IMDB
[Narayanan-Shmatikov '08]

e Correctly identify 30.8% of shared users between Twitter and Flickr
[Narayanan-Shmatikov '09]
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Application 2: Protein-Protein Interaction network
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Human network

Mouse network

[Kazemi-Hassani-Grossglauser-Modarres '16]

Graph matching for aligning PPI networks between different species, to
identify conserved components and genes with common function

[Singh-Xu-Berger '08]

Jiaming Xu (Duke)
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Application 3: Computer vision

A fundamental problem in computer vision: Detect and match similar
objects that undergo different deformations

P-4

Shape REtrieval Contest (SHREC) dataset [Lihner et al '16]
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Application 3: Computer vision

A fundamental problem in computer vision: Detect and match similar
objects that undergo different deformations

Shape REtrieval Contest (SHREC) dataset [Lihner et al '16]
3-D shapes — geometric graphs (features — nodes, distances — edges)
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Two key challenges

® Statistical: two graphs may not be the same
® Computational: # of possible node mappings is n! (100! ~ 10'°%)
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Beyond worst-case intractability

® NP-hard for matching two graphs in worst case

® However, real networks are not arbitrary and have latent structures
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Beyond worst-case intractability

® NP-hard for matching two graphs in worst case
® However, real networks are not arbitrary and have latent structures

® Recent surge of interests on the average-case analysis of matching
two correlated random graphs [Feizi at el.'16, Lyzinski at el'16,
Cullina-Kiyavash'16,17, Ding-Ma-Wu-Xu'18, Barak-Chou-Lei-Schramm-Sheng'19,
Fan-Mao-Wu-Xu'19a,19b, Ganassali-Massoulié¢'20, Hall-Massouli€'20, .. .]

® Focus on correlated Erdos-Rényi graphs model [Pedarsani-Grossglauser '11]
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Correlated Erdés-Rényi graphs model G(n, p, s)
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Correlated Erdés-Rényi graphs model G(n, p, s)
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Correlated Erdés-Rényi graphs model G(n, p, s)

A ~ G(n,ps)

Permute node labels |

uniform
byr ~ S,
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Correlated Erdés-Rényi graphs model G(n, p, s)

A ~ G(n,ps)

Permute node labels |

uniform
byr ~ S,

B ~ G(n,ps)

® (Ar@i)r(j), Bij) are i.i.d. pairs of correlated Bern(ps)
e Key parameter nps?: average degree of intersection graph A A B*;
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Correlated Gaussian model

B =pAT ++/1—p2Z,
where

® A and Z are independent Gaussian Wigner matrices with 4.i.d.
standard normal entries;

® A™ = (Ar(i)n(j)) denote the relabeled version of A
e Conditional on 7, forany 1 <17 < j < n,

(Ar(iy(s): Bij)i'w'N< (8) (,1) ?) ) :
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Two statistical tasks: detection and estimation

® Detection:
> Hy: A and B are two independent Erd8s-Rényi graphs G(n, ps)
» H;: A and B are two correlated Erdds-Rényi graphs G(n, p, s)
> Test between 1 and #H; based on observation of (A4, B)

® Estimation:

> Observe two correlated Erdés-Rényi graphs A, B ~ G(n, p, s)
» Recover the underlying true vertex correspondence 7
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Two statistical tasks: detection and estimation

® Detection:
> Hy: A and B are two independent Erd8s-Rényi graphs G(n, ps)
» H;: A and B are two correlated Erdds-Rényi graphs G(n, p, s)
> Test between 1 and #H; based on observation of (A4, B)

® Estimation:

> Observe two correlated Erdés-Rényi graphs A, B ~ G(n, p, s)
» Recover the underlying true vertex correspondence 7

Focus of this lecture
What are the information-theoretic limits of detection and estimation?
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Two statistical tasks: detection and estimation

® Detection:
> Hy: A and B are two independent Erd8s-Rényi graphs G(n, ps)
» H;: A and B are two correlated Erdds-Rényi graphs G(n, p, s)
> Test between 1 and #H; based on observation of (A4, B)

® Estimation:

> Observe two correlated Erdés-Rényi graphs A, B ~ G(n, p, s)
» Recover the underlying true vertex correspondence 7

Focus of this lecture
What are the information-theoretic limits of detection and estimation?

10+ years of development:
[Pedarsani-Grossglauser '11], [Cullina-Kiyavash '16,17], [Hall-Massoulié '20], [Ganassali '20],
[Wu-X.-Yu '20,21], [Ganassali-Lelarge-Massoulié '21], [Ding-Du '21 22]
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Maximum likelihood estimation as quadratic assignment

Maximum likelihood estimation reduces to quadratic assignment (QAP):

ML € arg max Z AijBﬂ(i)ﬂ(j) .
Ty

® QAP is NP-hard in worst case

e How much does 7, have in common with 7*7

A

(i € [n] : 7(0) = ()}

overlap(m, 7)

1
n
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Sharp threshold for detection: Gaussian

Theorem (Wu-X.-Yu '20)

np? > (4+€)logn = TV (P, Q) =1 — o(1) (test error=0(1))
np® < (4 —e)logn = TV (P, Q) = o(1) (test error=1 — o(1))
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Sharp threshold for detection: Gaussian

Theorem (Wu-X.-Yu '20)
np? > (4+€)logn = TV (P, Q) =1 — o(1) (test error=0(1))
np® < (4 —e)logn = TV (P, Q) = o(1) (test error=1 — o(1))

lim TV (P, Q)
n—oo
1 1]
weak detection E strong detection
impossible : possible
test error=1 — o(1) ' test error=o0(1)
0 4 lim 22

n—oo logn
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Sharp threshold for recovery: Gaussian model

Theorem (Wu-X.-Yu '21)

np® > (44 €)logn = Ty =7 w.h.p
np® < (4 — €)logn = overlap (7, 7) = o(1), w.h.p, ¥ estimator 7

E [overlap (7, 7)o

1
Partial recovery E Exact recovery
impossible i possible (MLE)
“Nothing” E “All”
H 5 0%
0 4 ? Togn
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Sharp threshold for recovery: Gaussian model

Theorem (Wu-X.-Yu '21)

np® > (44 €)logn = Ty =7 w.h.p
np® < (4 — €)logn = overlap (7, 7) = o(1), w.h.p, ¥ estimator 7

E [overlap (7, 7)o

1
Partial recovery E Exact recovery
impossible i possible (MLE)
“Nothing” E “All”
H 5 0%
0 4 ? Togn

® Exact recovery threshold is derived in [Ganassali '20]

® Exhibits a stronger form of “all or nothing” phenomenon
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Sharp detection threshold: dense Erdos-Rényi graphs

Theorem (Wu-X.-Yu '20)
Suppose n—o) < p<1—Q(1). Then,

nps? > (24+¢€)logn

> —5——— = TV(P,Q)=1-o0(1) (test error=0(1))
log 5= 14+p
nps? < (2—¢€)logn

€ - = TV (P, Q) = o(1) (test error=1 — o(1))
log 5= 1+p
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Sharp detection threshold: dense Erdos-Rényi graphs

Theorem (Wu-X.-Yu '20)
Suppose n—o) < p<1—Q(1). Then,

2+ ¢)logn
nps? > (1& = TV (P,Q)=1—o0(1) (test error=0(1))

log 5= 14+p

9 _ (2—¢€)logn
nps® < —5——— = TV (P, Q) = o(1) (test error=1 — o(1))

log 5= 1+p

lim TV (P, Q)
weak detection E strong detection
impossible E possible

test error=1 — o(1)* test error=o(1)

' s lim nps*(log(1/p)—1+p)
0 2 " nSoo logn

Jiaming Xu (Duke) Random Graph Matching
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Sharp recovery threshold: dense Erdos-Rényi

Theorem (Wu-X.-Yu '21)
Suppose n M) < p<1— Q(1). Then,

2+ €)logn -
nps® > # = overlap (Tumr, ) = 1 —o(1) w.h.p
log 5= 1+p
2 —¢€)logn - . -
nps® < (1# = overlap (7, 7) = o(1), w.h.p, V estimator T
log 5= 1+p
w
E [overlap (7, 7)] p
1
Partial recovery E Almost exact recovery
impossible E possible (MLE)
“Nothing” : “AL
5 1ps”(log(1/p)—1+p)
0 2 ’ logn
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Sharp recovery threshold: dense Erdos-Rényi

Theorem (Wu-X.-Yu '21)

Suppose n—o) < p<1—Q(1). Then,
2 (2+4+¢€)logn

nps
P _log%—l—i-p

= overlap (Tumr, ) = 1 —o(1) w.h.p

nps? < (2—¢)logn

S = overlap (7, 7) = o(1), w.h.p, V estimator T
0g 5 — 1+p

Interpretation of threshold:

1
e I(m A, B)~ (3) x ps2<log—l—|—p>
p

/

mutual info btw two correlated edges

e H(m)~nlogn
® Threshold is at I(m; A, B) ~ H ()

Jiaming Xu (Duke) Random Graph Matching
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Sharp detection threshold: sparse Erdds-Rényi

Theorem (Ding-Du '22a)

Suppose p =n~% for a € (0,1) and \* = v~ 1(1/a).

nps® > XN+ e = TV (P, Q) =1 — o(1) (test error=0(1))
nps®* < \* —e = TV (P, Q) = o(1) (test error=1 — o(1))

e Sharpened our threshold at nps? = ©(1) [Wu-X-Yu '20]
® v:[l,00) = [1,00) is given by the densest subgraph problem in
Erdés-Rényi g(n, )\) [Hajek '90, Anantharam-Salez’ 16]

£

max — y(A
0£UcCln] |U] 7

® When np = ©(1), there is no zero-one phase transition.

Jiaming Xu (Duke) Random Graph Matching 16



Sharp recovery threshold: sparse Erdos-Rényi

Theorem (Ding-Hu '22b)

Suppose p = n~% for a € (0,1] and \* =y~ (1/a).

nps® > \* + ¢ = overlap (Fyr, 7) > Q(1) w.h.p.
nps® < \* —e = overlap (7, 7) = o(1) w.h.p. V7
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Sharp recovery threshold: sparse Erdos-Rényi

Theorem (Ding-Hu '22b)

Suppose p = n~% for a € (0,1] and \* =y~ (1/a).

nps® > \* + ¢ = overlap (Fyr, 7) > Q(1) w.h.p.
nps® < \* —e = overlap (7, 7) = o(1) w.h.p. V7

® The negative result of & = 1 is proved in [Ganassali-Lelarge-Massoulié '21]
® Sharpen our partial recovery threshold at nps? = O(1) [Wu-X-Yu '21]

® “All-or-nothing” phenomenon does not exist, as almost exact
recovery (overlap = 1 — o(1)) requires
nps2 — OO [Cullina-Kiyavash-Mittal-Poor '19]
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Exact recovery threshold

Theorem (Wu-X.-Yu '21)

Suppose p < 1 —Q(1). Then
nps® > M = overlap (TmL, 7) = 1 w.h.p.
GV
9 _ (1—¢€)logn ~ ~
nps® < ~————25- = overlap (7,7) # 1 w.hp. V7.
(L - vp)
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Exact recovery threshold

Theorem (Wu-X.-Yu '21)

Suppose p <1 —Q(1). Then
5 (1+€)logn

nps- > 5~ == overlap (TmL, ™) = 1 w.h.p.
GV
9 _ (1—¢€)logn ~ ~
nps® < ~————25- = overlap (7,7) # 1 w.hp. V7.
(L - vp)

® p =o0(1): reduces to the connectivity threshold of the intersection
graph A A B* ~ G(n, ps?) [Cullina-Kiyavash'16,17]
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Exact recovery threshold

Theorem (Wu-X.-Yu '21)

Suppose p <1 —Q(1). Then
5 (1+€)logn

nps- > 5~ == overlap (TmL, ™) = 1 w.h.p.
GV
9 _ (1—¢€)logn ~ ~
nps® < ~————25- = overlap (7,7) # 1 w.hp. V7.
(L - vp)

® p =o0(1): reduces to the connectivity threshold of the intersection
graph A A B* ~ G(n, ps?) [Cullina-Kiyavash'16,17]
e p=Q(1): strictly higher than the connectivity threshold

Jiaming Xu (Duke) Random Graph Matching
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Analysis

® Proof of detection thresholds
® Proof of partial recovery thresholds

® Proof of exact recovery thresholds
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Proof of detection thresholds: Positive results

® Gaussian or dense Erd6s-Rényi: analyzing QAP statistic

712%): L AijBﬂ(i)ﬂ(j) (# of common edges)
1<J

® Sparse Erdés-Rényi: analyzing densest subgraph statistic

& (U)
max max ,
7€Sy UC[n):|U|>n/logn |U|

where £,(U) is the set of edges induced by vertices in U in
intersection graph A™ A B

e Standard first-moment computation

Jiaming Xu (Duke) Random Graph Matching 20



Proof of detection thresholds: Negative results

Second-moment method

o
Eo (ggﬁg) | =ow — TV(P,Q) < 1-Q(1)
Strong detection is impossible

_ o
Eo <g§i: i;) =1+o0(1) = TV(P,Q)=0(1)

Weak detection is impossible

Jiaming Xu (Duke) Random Graph Matching pal



Cycle (orbit) decomposition

¢ Node permutation o acts on [n]
e Edge permutation o acts on (2): oF((i,5)) £ (a(i),0(5))

22
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Cycle (orbit) decomposition

¢ Node permutation o acts on [n]
e Edge permutation o acts on (2): oF((i,5)) £ (a(i),0(5))

Example: n =6 and o = (1)(23)(456):

7.0,

22
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Cycle (orbit) decomposition

¢ Node permutation o acts on [n]
e Edge permutation o acts on (2): oF((i,5)) £ (a(i),0(5))

Example: n =6 and o = (1)(23)(456):

2 4
Y
NG
56 5 o
1,2 1,4 4,5
e Q (O) (Q) N (3,6) (3,5)
Y (1,3) (L6){1,5) (4,6;5,6)(2’5) (2,6)
(3,4)
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Cycle (orbit) decomposition

¢ Node permutation o acts on [n]
e Edge permutation o acts on (2): oF((i,5)) £ (a(i),0(5))

Example: n =6 and o = (1)(23)(456):

e

(3,5)
(1 6;1 5 (4 6;5 2,6)

RTQRNE BT i%%
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Second-moment calculation via orbit decomposition

(aiim) - (= [ ])

P (Br(iyr ()| 4ij )P (Bz(iyz ()| Ai)
:]E% x X Xé ()7 J ()7 (g J
n 1} i Xij O(Br(iyn(i) 2 Briyeii)

=Fzu- [[ Xo Xo2 ] X4
0eo (4,5)€0

O: disjoint orbits of edge permutation ¢F with 0 2 7 Lo7
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Second-moment calculation via orbit decomposition

(aiim) - (= [ ])

P(Briye(j)|Aij ) P(Bz iz ()| Aij
:]E%Jj_ﬂHXij X = Batoeiy 2P Brigreply)
o Q(Br(iyx(j)) (Bxi)#(j))
= E%ﬂjr H XO XO é H Xz]
lo)=10) (4,5)€0

O: disjoint orbits of edge permutation ¢F with 0 2 7 Lo7

(D)

=Ezu-Eo [[ Xo =Ezu. [] EelXol
0eO 0eO
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Second-moment calculation via orbit decomposition

(aiim) - (= [ ])

P(Briye(j)|Aij ) P(Bz iz ()| Aij
:]E%M_ﬂHXij X = Batoeiy 2P Brigreply)
o Q(Br(iyx(j)) (Bxi)#(j))
= E%ﬂjr H XO XO é H Xz]
lo)=10) (4,5)€0

O: disjoint orbits of edge permutation ¢F with 0 2 7 Lo7

(D)

1
Eo [Xo] = { =777
e[¥ol {1+p2l0| Erdés-Rényi

=Ezu-Eo [[ Xo =Ezu. [] EelXol
0eO 0eO

Gaussian
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Failure of second-moment

We show
(sti5)

® Gaussian: suboptimal by a factor of 2

logn

{1 to(l) if p? < (B=clloen
Eo _

S=3 =

+00 if P2 > (2+¢€) logn

® ER graphs: suboptimal by an unbounded factor when p = o(1)

Jiaming Xu (Duke) Random Graph Matching 24



Failure of second-moment

We show
(aii3)

® Gaussian: suboptimal by a factor of 2

logn

B {1+0(1) if p? < (2=9logn

E
Q +00 if P logn

S=3 =

2 (2+e€

® ER graphs: suboptimal by an unbounded factor when p = o(1)

Obstruction from short orbits
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Failure of second-moment

We show
(aii3)

® Gaussian: suboptimal by a factor of 2

logn

B {1+0(1) if p? < (2=9logn

E
Q +00 if P logn

S=3 =

2 (2+e€

® ER graphs: suboptimal by an unbounded factor when p = o(1)

Obstruction from short orbits

P(A,B)\? F=r 1 @)
(5a) Z ()

Atypically large magnitude of [[pce.j0j=k Xo for short orbits of length
k < logn = second-moment blows up

I Ec [xo]

(0@

Ea,B)~0 =Eru%
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Truncated second-moment

Let £ denote an event that holds whp under P:

PA, B\ ]
EQ (QEA B;) 1{5} = 0(1) — TV(P, Q) <1- Q(l)
_ _ Strong detection is impossible
[ (P(A, B)\?

Weak detection is impossible

Jiaming Xu (Duke) Random Graph Matching 25



Truncated second-moment: Gaussian model

It suffices to consider k = 1:

n
y £ H Xo ~ exp (—p2< 21) + 2p€A7r/\B(F>>

0€0:|0|=1

e Fis the set of fixed points of ¢ = 71

® earpnp(F) £ Z(i,j)EF Aniyn(s) Bij

o7 and ny = |F|
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Truncated second-moment: Gaussian model

It suffices to consider k = 1:

n
y £ H Xo ~ exp (—p2< 21) + 2p€A7r/\B(F>>

0€0:|0|=1

® Fis the set of fixed points of 0 £ 71 o7 and ny = |F|
* earn(F) 2 X yer An(iyn() Bij
® Under P: ea~np(S) concentrates on p(‘”g') uniformly over all S

when |S| is large
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Truncated second-moment: Gaussian model

It suffices to consider k = 1:

n
y £ H Xo ~ exp (—p2< 21) + 2p€A7r/\B(F>>

0€0:|0|=1

1

F is the set of fixed points of 0 £ 771 o7 and ny = |F|
eanB(F) £ X her Antiyn() Big
Under P: eg~ap(S) concentrates on p(
when |S| is large

‘g') uniformly over all S

On this typical event € under P, when |F| is large,

—p2 (™ 2pean ag(F
Eo [Yigg] e (#)Eq [6 Peamn BN g (V<))

2
A exp <p2 <7;1>> (Gain a factor of 2)
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Truncated second-moment: dense Erdds-Rényi

Again it suffices to consider k = 1:

1 2eam B (F)
p

0€0:|0|=1

® Under P: earnp(S) concentrates on (lgl)ps2 uniformly over all S

when |S] is large
® On this typical event £ under P, when |F| is large,
1>2€A7TAB(F)

Eo [Y1(g] SEo [(

p 1{(3AWAB(F)S(\§\)[,52}

Jiaming Xu (Duke) Random Graph Matching 27



Truncated second-moment: sparse Erdds-Rényi

Need to consider k = ©(logn). It can be shown
® | ong orbits:

n2

Eo H Xo| < (ler”‘)T =1+o0(1)
[O|>Ek
® Short incomplete orbits:
EQ[XO ’ O¢E(A/\B7r)] <1

® Short complete orbits:

1\ 210l
Xo:<p> , YO C E(AAB™)

Suffices to consider subgraph [}, £ Uo:jo|<k,0cE(arnB™)O

Jiaming Xu (Duke) Random Graph Matching 28



Truncated second-moment: sparse Erdds-Rényi

o If nps? <1—w(n/3):
& = {A A B™ is a pseudoforest}
° Ifnps? < \*—¢
& £ {The subgraph density of A A B™ is smaller than (\*)}
Then
1

2e(Hy,)
Eo H Xo].{g} < (1+0(1))Eg <> 1{Hk is admissible}
0eO p

= (14 o(1)) Z s2¢(H)  (generating function)
HeHy

Hy: The set of all admissible Hj,

Jiaming Xu (Duke) Random Graph Matching



Truncated second-moment: sparse Erdds-Rényi

o If nps? <1—w(n/3):
& = {A A B™ is a pseudoforest}
° Ifnps? < \*—¢
& £ {The subgraph density of A A B™ is smaller than (\*)}
Then
1

2e(Hy,)
Eo H Xo].{g} < (1+0(1))Eg <> 1{Hk is admissible}
0eO p

= (14 o(1)) Z s2¢(H)  (generating function)
HeHy

Hy: The set of all admissible Hj,

Key remaining challenge: enumerate H; using orbit structure

J
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Analysis

® Proof of detection thresholds
® Proof of partial recovery thresholds

® Proof of exact recovery thresholds

Jiaming Xu (Duke) Random Graph Matching



Proof of partial recovery thresholds: Positive results

® Gaussian or dense Erdés-Rényi: analyzing MLE (QAP)
I, € arg max ;Aiij(i)w(j)
i<j

® Sparse Erd6s-Rényi: Analyze densest subgraph in intersection graph
ATANB

Jiaming Xu (Duke) Random Graph Matching 31



Proof of negative results: Gaussian model

@ Characterization of mutual info by truncated 2nd moment method:

rtia.8) = ()10 - kuPle) = () 160

where I(p) = 5 log 1= is the mutual info between two p-correlated

standard Gaussians

Jiaming Xu (Duke) Random Graph Matching 32



Proof of negative results: Gaussian model

@ Characterization of mutual info by truncated 2nd moment method:

rtia.8) = ()10 - kuPle) = () 160

where I(p) = 5 log 1= is the mutual info between two p-correlated

standard Gaussians

® An area theorem based on I-MMSE formula [Guo-Shamai-Verdd '05]

do

1/”2 mmsey(A™ | A, B)
2.Jo

I(n*;A,B) = = (1- 072
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Proof of negative results: Gaussian model

@ Characterization of mutual info by truncated 2nd moment method:

rtia.8) = ()10 - kuPle) = () 160

where I(p) = 5 log 1= is the mutual info between two p-correlated

standard Gaussians

® An area theorem based on I-MMSE formula [Guo-Shamai-Verdd '05]

1 [ mmsey(A™ | A, B)
I(n*;A,B) = = ~—~df
(3] Impossibility of estimating A™ in squared error

=—> Impossibility of estimating 7* in overlap
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Proof of negative results: Erdos-Rényi

@ Characterization of mutual info by truncated 2nd moment method:

(4. 8) = (5 ) 1.9) - KLUPIQ) ~ (5 ) 1600
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Proof of negative results: Erdos-Rényi

@ Characterization of mutual info by truncated 2nd moment method:

(4. 8) = (5 ) 1.9) - KLUPIQ) ~ (5 ) 1600

® An “approximate” area theorem: Find an interpolating model Py
such that Py = @ and P, = P, and

1
I(r*; A, B) = <Z>I(p, s) — s/ 0 - mmsey(A™ |A, B)d
0
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Proof of negative results: Erdos-Rényi

@ Characterization of mutual info by truncated 2nd moment method:

(4. 8) = (5 ) 1.9) - KLUPIQ) ~ (5 ) 1600

® An “approximate” area theorem: Find an interpolating model Py
such that Py = @ and P, = P, and

1
I(r*; A, B) = <Z>I(p, s) — s/ 0 - mmsey(A™ |A, B)d
0

(3] Impossibility of estimating A™  in squared error
= Impossibility of estimating 7* in overlap
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Analysis

® Proof of detection thresholds
® Proof of partial recovery thresholds

® Proof of exact recovery thresholds
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Proof of exact recovery thresholds: Positive results

® Decompose the likelihood difference via edge orbits

<A7r AT, B>
Z Z Ar(iyr(j) Bij — Z Z Are(iymr () Bij
0e0\0 (i,5)€0 0eO\01 (i,7)€0

Xo Yo

® Apply large deviation analysis:

» For 7 far away from 7*: bound )", X and ), Yo separately
» For 7 close to 7*: bound )", (X0 — Yo) directly

® The contribution of longer edge orbits can be effectively bounded by
that of the 2-edge orbits

Mio| 2 Elexp(tXo)] < M)’?, v|0| > 2
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Proof of exact recovery thresholds: Negative results

e Suffices to show the failure of MLE

® The bottleneck happens when 7’ differs from 7 by a 2-node orbit
(i,7), for which the likelihood difference simplifies to

A" — A™ B
{ )

=— > (Ae@mrw — ArGrw) (Bx — Bji)
keln\{i.j}

® Prove the existence of (i, j) for which (A™ — A™  B) > 0 whp
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Concluding remarks

Partial
recovery & Almost exact
i recovery Exact recovery
detection
—o(1 2 _ 2logn
n—o(D) nps® = i Tp e
P (1—y/p)?logn
n-¢ nps2 = \* np32 _ w(l)
Gaussian np® _ 4
logn —
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Concluding remarks

Partial
& Almost exact
recovery recovery Exact recovery
detection
—o(1 2 _ _ 2logn
n 1) nps- = log(1/p)—1+p L‘@ =
P (1—y/p)?logn
n=« nps® = \* nps® = w(1)
2
. np® _
Gaussian logn — 4
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