Lecture 2: Random Graph Matching: Information-theoretic Limits

Jiaming Xu

The Fuqua School of Business Duke University

Joint work with Yihong Wu (Yale) and Sophie H. Yu (Duke)

> April 18, 2023 AI4OPT Tutorial Lectures

Goal: find a mapping between two node sets that maximally aligns the edges (i.e. minimizes $#$ of adjacency disagreements)

Goal: find a mapping between two node sets that maximally aligns the edges (i.e. minimizes $#$ of adjacency disagreements)

Quadratic Assignment Problem (QAP) :

$$
\max_{\pi \in S_n} \sum_{i < j} A_{ij} B_{\pi(i)\pi(j)}
$$

Goal: find a mapping between two node sets that maximally aligns the edges (i.e. minimizes $#$ of adjacency disagreements)

Quadratic Assignment Problem (QAP) :

$$
\max_{\pi \in S_n} \sum_{i < j} A_{ij} B_{\pi(i)\pi(j)}
$$

Noiseless case: reduce to graph isomorphism

Application 1: Network de-anonymization

- Successfully de-anonymize Netflix dataset by matching it to IMDB [Narayanan-Shmatikov '08]
- Correctly identify 30.8% of shared users between Twitter and Flickr [Narayanan-Shmatikov '09]

Application 2: Protein-Protein Interaction network

We say a protein *u* from a pathway is aligned correctly, if

 $\left[$ Kazemi-Hassani-Grossglauser-Modarres '16] are proteins which are in the same pathway (i.e., a pathway with the

 $Gron$ a
tali across species, and many interactions among these proteins are conserved. This expectation is a conserved that \sim Graph matching for aligning PPI networks between different species, to identify conserved components and genes with common function $t \sim \frac{100}{\pi}$ $m_{\rm g}$ mapped proteins is four. Therefore, the accuracy of aligning t [Singh-Xu-Berger '08]

A fundamental problem in computer vision: Detect and match similar objects that undergo different deformations

Shape REtrieval Contest (SHREC) dataset [Lähner et al '16]

A fundamental problem in computer vision: Detect and match similar objects that undergo different deformations

Shape REtrieval Contest (SHREC) dataset [Lähner et al '16]

3-D shapes \rightarrow geometric graphs (features \rightarrow nodes, distances \rightarrow edges)

Two key challenges

- Statistical: two graphs may not be the same
- Computational: # of possible node mappings is $n!$ (100! $\approx 10^{158}$)

- NP-hard for matching two graphs in worst case
- However, real networks are not arbitrary and have latent structures
- NP-hard for matching two graphs in worst case
- However, real networks are not arbitrary and have latent structures
- Recent surge of interests on the average-case analysis of matching two correlated random graphs [Feizi at el.'16, Lyzinski at el'16, Cullina-Kiyavash'16,17, Ding-Ma-Wu-Xu'18, Barak-Chou-Lei-Schramm-Sheng'19, Fan-Mao-Wu-Xu'19a,19b, Ganassali-Massoulié'20, Hall-Massoulié'20, . . .]
- Focus on correlated Erdős-Rényi graphs model [Pedarsani-Grossglauser '11]

 $G \sim \mathcal{G}(n, p)$

Jiaming Xu (Duke) [Random Graph Matching](#page-0-0) 8

 \bullet $(A_{\pi(i)\pi(j)},B_{ij})$ are $i.i.d.$ pairs of correlated $\text{Bern}(ps)$

• Key parameter nps^2 : average degree of intersection graph $A\wedge B^*;$

Correlated Gaussian model

$$
B = \rho A^{\pi} + \sqrt{1 - \rho^2} Z,
$$

where

- A and Z are independent Gaussian Wigner matrices with $i.i.d.$ standard normal entries;
- \bullet $A^{\pi} = (A_{\pi(i)\pi(j)})$ denote the relabeled version of A
- Conditional on π , for any $1 \leq i < j \leq n$,

$$
(A_{\pi(i)\pi(j)}, B_{ij}) \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(\begin{pmatrix} 0\\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho\\ \rho & 1 \end{pmatrix}\right).
$$

- Detection:
	- \blacktriangleright \mathcal{H}_0 : A and B are two independent Erdős-Rényi graphs $\mathcal{G}(n, ps)$
	- \blacktriangleright H₁: A and B are two correlated Erdős-Rényi graphs $\mathcal{G}(n, p, s)$
	- **If** Test between \mathcal{H}_0 and \mathcal{H}_1 based on observation of (A, B)
- Estimation:
	- ► Observe two correlated Erdős-Rényi graphs $A, B \sim \mathcal{G}(n, p, s)$
	- Recover the underlying true vertex correspondence π
- Detection:
	- \blacktriangleright H₀: A and B are two independent Erdős-Rényi graphs $\mathcal{G}(n, ps)$
	- \blacktriangleright H₁: A and B are two correlated Erdős-Rényi graphs $\mathcal{G}(n, p, s)$
	- **If** Test between \mathcal{H}_0 and \mathcal{H}_1 based on observation of (A, B)
- Estimation:
	- ► Observe two correlated Erdős-Rényi graphs $A, B \sim \mathcal{G}(n, p, s)$
	- **IDED** Recover the underlying true vertex correspondence π

Focus of this lecture

What are the information-theoretic limits of detection and estimation?

- Detection:
	- \blacktriangleright \mathcal{H}_0 : A and B are two independent Erdős-Rényi graphs $\mathcal{G}(n, ps)$
	- \blacktriangleright H₁: A and B are two correlated Erdős-Rényi graphs $\mathcal{G}(n, p, s)$
	- **If** Test between \mathcal{H}_0 and \mathcal{H}_1 based on observation of (A, B)
- Estimation:
	- ► Observe two correlated Erdős-Rényi graphs $A, B \sim \mathcal{G}(n, p, s)$
	- **I** Recover the underlying true vertex correspondence π

Focus of this lecture

What are the information-theoretic limits of detection and estimation?

 $10+$ years of development:

[Pedarsani-Grossglauser '11], [Cullina-Kiyavash '16,17], [Hall-Massoulié '20], [Ganassali '20],

[Wu-X.-Yu '20,21], [Ganassali-Lelarge-Massoulié '21], [Ding-Du '21 22]

Maximum likelihood estimation reduces to quadratic assignment (QAP):

$$
\widehat{\pi}_{\mathsf{ML}} \in \arg \max_{\pi} \sum_{i < j} A_{ij} B_{\pi(i)\pi(j)}.
$$

- QAP is NP-hard in worst case
- How much does $\widehat{\pi}_{\rm ML}$ have in common with π^* ?

overlap
$$
(\pi, \widehat{\pi}) \triangleq \frac{1}{n} \left| \{ i \in [n] : \widehat{\pi}(i) = \pi(i) \} \right|
$$

$$
n\rho^2 \ge (4 + \epsilon) \log n \implies \text{TV}(\mathcal{P}, \mathcal{Q}) = 1 - o(1) \text{ (test error=0(1))}
$$

$$
n\rho^2 \le (4 - \epsilon) \log n \implies \text{TV}(\mathcal{P}, \mathcal{Q}) = o(1) \text{ (test error=1} - o(1))
$$

$$
n\rho^2 \ge (4 + \epsilon) \log n \implies \text{TV}(\mathcal{P}, \mathcal{Q}) = 1 - o(1) \text{ (test error=0(1))}
$$

$$
n\rho^2 \le (4 - \epsilon) \log n \implies \text{TV}(\mathcal{P}, \mathcal{Q}) = o(1) \text{ (test error=1} - o(1))
$$

$$
n\rho^2 \ge (4 + \epsilon) \log n \implies \hat{\pi}_{ML} = \pi \text{ w.h.p.}
$$

$$
n\rho^2 \le (4 - \epsilon) \log n \implies \text{overlap}(\hat{\pi}, \pi) = o(1), \text{ w.h.p.} \forall \text{ estimator } \hat{\pi}
$$

$$
n\rho^2 \ge (4 + \epsilon) \log n \implies \hat{\pi}_{ML} = \pi \text{ w.h.p.}
$$

$$
n\rho^2 \le (4 - \epsilon) \log n \implies \text{overlap}(\hat{\pi}, \pi) = o(1), \text{ w.h.p.} \forall \text{ estimator } \hat{\pi}
$$

- Exact recovery threshold is derived in [Ganassali '20]
- Exhibits a stronger form of "all or nothing" phenomenon

Sharp detection threshold: dense Erdős-Rényi graphs

Theorem (Wu-X.-Yu '20)

Suppose
$$
n^{-o(1)} \leq p \leq 1 - \Omega(1)
$$
. Then,

$$
nps^2 \ge \frac{(2+\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \implies \text{TV}(\mathcal{P}, \mathcal{Q}) = 1 - o(1) \text{ (test error=0(1))}
$$
\n
$$
nps^2 \le \frac{(2-\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \implies \text{TV}(\mathcal{P}, \mathcal{Q}) = o(1) \text{ (test error=1 - o(1))}
$$

Sharp detection threshold: dense Erdős-Rényi graphs

Theorem (Wu-X.-Yu '20)

Suppose
$$
n^{-o(1)} \leq p \leq 1 - \Omega(1)
$$
. Then,

$$
nps^2 \ge \frac{(2+\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \implies \text{TV}(\mathcal{P}, \mathcal{Q}) = 1 - o(1) \text{ (test error=0(1))}
$$
\n
$$
nps^2 \le \frac{(2-\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \implies \text{TV}(\mathcal{P}, \mathcal{Q}) = o(1) \text{ (test error=1 - o(1))}
$$

Sharp recovery threshold: dense Erdős-Rényi

Theorem (Wu-X.-Yu '21)

Suppose
$$
n^{-o(1)} \le p \le 1 - \Omega(1)
$$
. Then,
\n $nps^2 \ge \frac{(2+\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \implies \text{overlap } (\hat{\pi}_{\text{ML}}, \pi) = 1 - o(1) \text{ w.h.p.}$
\n $nps^2 \le \frac{(2-\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \implies \text{overlap } (\hat{\pi}, \pi) = o(1), \text{ w.h.p.} \forall \text{ estimator } \hat{\pi}$

Suppose
$$
n^{-o(1)} \le p \le 1 - \Omega(1)
$$
. Then,
\n $nps^2 \ge \frac{(2+\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \implies \text{overlap}(\hat{\pi}_{ML}, \pi) = 1 - o(1) \text{ w.h.p.}$
\n $nps^2 \le \frac{(2-\epsilon)\log n}{\log \frac{1}{p} - 1 + p} \implies \text{overlap}(\hat{\pi}, \pi) = o(1), \text{ w.h.p.} \forall \text{ estimator } \hat{\pi}$

Interpretation of threshold:

•
$$
I(\pi; A, B) \approx {n \choose 2} \times \qquad ps^2 \left(\log \frac{1}{p} - 1 + p\right)
$$

mutual info btw two correlated edges

- $H(\pi) \approx n \log n$
- Threshold is at $I(\pi; A, B) \approx H(\pi)$

Theorem (Ding-Du '22a)

Suppose
$$
p = n^{-\alpha}
$$
 for $\alpha \in (0, 1)$ and $\lambda^* = \gamma^{-1}(1/\alpha)$.

$$
nps^2 \ge \lambda^* + \epsilon \implies TV(\mathcal{P}, \mathcal{Q}) = 1 - o(1) \text{ (test error=0(1))}
$$

$$
nps^2 \le \lambda^* - \epsilon \implies TV(\mathcal{P}, \mathcal{Q}) = o(1) \text{ (test error=1 - o(1))}
$$

- Sharpened our threshold at $nps^2 = \Theta(1)$ [Wu-X.-Yu '20]
- $\gamma : [1, \infty) \to [1, \infty)$ is given by the densest subgraph problem in Erdős-Rényi $\mathcal{G}(n, \frac{\lambda}{n})$ [Hajek '90, Anantharam-Salez' 16]

$$
\max_{\emptyset \neq U \subset [n]} \frac{|\mathcal{E}(U)|}{|U|} \to \gamma(\lambda)
$$

When $np = \Theta(1)$, there is no zero-one phase transition.

Theorem (Ding-Hu '22b)

Suppose
$$
p = n^{-\alpha}
$$
 for $\alpha \in (0, 1]$ and $\lambda^* = \gamma^{-1}(1/\alpha)$.

$$
nps^2 \ge \lambda^* + \epsilon \implies \text{overlap}(\widehat{\pi}_{\text{ML}}, \pi) \ge \Omega(1) \text{ w.h.p.}
$$

$$
nps^2 \le \lambda^* - \epsilon \implies \text{overlap}(\widehat{\pi}, \pi) = o(1) \text{ w.h.p. } \forall \widehat{\pi}
$$

Theorem (Ding-Hu '22b)

Suppose
$$
p = n^{-\alpha}
$$
 for $\alpha \in (0, 1]$ and $\lambda^* = \gamma^{-1}(1/\alpha)$.

$$
nps^2 \ge \lambda^* + \epsilon \implies \text{overlap}(\widehat{\pi}_{\text{ML}}, \pi) \ge \Omega(1) \text{ w.h.p.}
$$

$$
nps^2 \le \lambda^* - \epsilon \implies \text{overlap}(\widehat{\pi}, \pi) = o(1) \text{ w.h.p. } \forall \widehat{\pi}
$$

- The negative result of $\alpha = 1$ is proved in [Ganassali-Lelarge-Massoulié '21]
- Sharpen our partial recovery threshold at $nps^2 = \Theta(1)$ [Wu-X.-Yu '21]
- "All-or-nothing" phenomenon does not exist, as almost exact recovery (overlap = $1 - o(1)$) requires $nps^2\to\infty$ [Cullina-Kiyavash-Mittal-Poor '19]

Suppose
$$
p \le 1 - \Omega(1)
$$
. Then
\n
$$
nps^2 \ge \frac{(1+\epsilon)\log n}{(1-\sqrt{p})^2} \implies \text{overlap } (\widehat{\pi}_{\text{ML}}, \pi) = 1 \text{ w.h.p.}
$$
\n
$$
nps^2 \le \frac{(1-\epsilon)\log n}{(1-\sqrt{p})^2} \implies \text{overlap } (\widehat{\pi}, \pi) \ne 1 \text{ w.h.p. } \forall \widehat{\pi}.
$$

Suppose
$$
p \le 1 - \Omega(1)
$$
. Then
\n
$$
nps^2 \ge \frac{(1+\epsilon)\log n}{(1-\sqrt{p})^2} \implies \text{overlap } (\widehat{\pi}_{\text{ML}}, \pi) = 1 \text{ w.h.p.}
$$
\n
$$
nps^2 \le \frac{(1-\epsilon)\log n}{(1-\sqrt{p})^2} \implies \text{overlap } (\widehat{\pi}, \pi) \ne 1 \text{ w.h.p. } \forall \widehat{\pi}.
$$

• $p = o(1)$: reduces to the connectivity threshold of the intersection graph $A \wedge B^* \sim \mathcal{G}(n,ps^2)$ [Cullina-Kiyavash'16,17]

Suppose
$$
p \le 1 - \Omega(1)
$$
. Then
\n
$$
nps^2 \ge \frac{(1+\epsilon)\log n}{(1-\sqrt{p})^2} \implies \text{overlap}(\widehat{\pi}_{\text{ML}}, \pi) = 1 \text{ w.h.p.}
$$
\n
$$
nps^2 \le \frac{(1-\epsilon)\log n}{(1-\sqrt{p})^2} \implies \text{overlap}(\widehat{\pi}, \pi) \ne 1 \text{ w.h.p. } \forall \widehat{\pi}.
$$

- $p = o(1)$: reduces to the connectivity threshold of the intersection graph $A \wedge B^* \sim \mathcal{G}(n,ps^2)$ [Cullina-Kiyavash'16,17]
- $p = \Omega(1)$: strictly higher than the connectivity threshold

Analysis

- Proof of detection thresholds
- Proof of partial recovery thresholds
- Proof of exact recovery thresholds

Proof of detection thresholds: Positive results

• Gaussian or dense Erdős-Rényi: analyzing QAP statistic

$$
\max_{\pi \in S_n} \sum_{i < j} A_{ij} B_{\pi(i)\pi(j)} \quad (\# \text{ of common edges})
$$

• Sparse Erdős-Rényi: analyzing densest subgraph statistic

$$
\max_{\pi \in S_n} \max_{U \subset [n]: |U| \ge n/\log n} \frac{\mathcal{E}_{\pi}(U)}{|U|},
$$

where $\mathcal{E}_{\pi}(U)$ is the set of edges induced by vertices in U in intersection graph $A^{\pi} \wedge B$

• Standard first-moment computation

Second-moment method

 $\int (\mathcal{P}(A, B))$ $\mathcal{Q}(A, B)$

 $\mathbb{E}_{\mathcal{Q}}$

$$
\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right] = O(1)
$$

 \setminus^2

$$
= O(1) \qquad \qquad \Longrightarrow \mathrm{TV}(\mathcal{P}, \mathcal{Q}) \le 1 - \Omega(1)
$$

Strong detection is impossible

$$
= 1 + o(1) \qquad \qquad \implies TV(\mathcal{P}, \mathcal{Q}) = o(1)
$$

Weak detection is impossible

- Node permutation σ acts on $[n]$
- Edge permutation σ^{E} acts on $\binom{[n]}{2}$ $\sigma^{\mathsf{E}}((i,j)) \triangleq (\sigma(i), \sigma(j))$

- Node permutation σ acts on $[n]$
- Edge permutation σ^{E} acts on $\binom{[n]}{2}$ $\sigma^{\mathsf{E}}((i,j)) \triangleq (\sigma(i), \sigma(j))$

Example: $n = 6$ and $\sigma = (1)(23)(456)$:

- **Node permutation** σ acts on $[n]$
- Edge permutation σ^{E} acts on $\binom{[n]}{2}$ $\sigma^{\mathsf{E}}((i,j)) \triangleq (\sigma(i), \sigma(j))$

Example: $n = 6$ and $\sigma = (1)(23)(456)$:

- Node permutation σ acts on $[n]$
- Edge permutation σ^{E} acts on $\binom{[n]}{2}$ $\sigma^{\mathsf{E}}((i,j)) \triangleq (\sigma(i), \sigma(j))$

Example: $n = 6$ and $\sigma = (1)(23)(456)$:

Second-moment calculation via orbit decomposition

$$
\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2 = \left(\mathbb{E}_{\pi}\left[\frac{\mathcal{P}(A,B|\pi)}{\mathcal{Q}(A,B)}\right]\right)^2
$$

$$
= \mathbb{E}_{\widetilde{\pi}\perp\perp\pi}\prod_{i
$$
= \mathbb{E}_{\widetilde{\pi}\perp\perp\pi}\prod_{O\in\mathcal{O}} X_O \quad X_O \triangleq \prod_{(i,j)\in O} X_{ij}
$$
$$

 \mathcal{O} : disjoint orbits of edge permutation σ^{E} with $\sigma \triangleq \pi^{-1} \circ \widetilde{\pi}$

Second-moment calculation via orbit decomposition

$$
\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2 = \left(\mathbb{E}_{\pi}\left[\frac{\mathcal{P}(A,B|\pi)}{\mathcal{Q}(A,B)}\right]\right)^2
$$

$$
= \mathbb{E}_{\widetilde{\pi}\perp\perp\pi}\prod_{i
$$
= \mathbb{E}_{\widetilde{\pi}\perp\perp\pi}\prod_{O\in\mathcal{O}} X_O \quad X_O \triangleq \prod_{(i,j)\in O} X_{ij}
$$
$$

O: disjoint orbits of edge permutation σ^{E} with $\sigma \triangleq \pi^{-1} \circ \widetilde{\pi}$

$$
\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right] = \mathbb{E}_{\widetilde{\pi}\perp \pi} \mathbb{E}_{\mathcal{Q}} \prod_{O \in \mathcal{O}} X_O = \mathbb{E}_{\widetilde{\pi}\perp \pi} \prod_{O \in \mathcal{O}} \mathbb{E}_{\mathcal{Q}} \left[X_O\right]
$$

Second-moment calculation via orbit decomposition

$$
\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2 = \left(\mathbb{E}_{\pi}\left[\frac{\mathcal{P}(A,B|\pi)}{\mathcal{Q}(A,B)}\right]\right)^2
$$

$$
= \mathbb{E}_{\widetilde{\pi}\perp\perp\pi}\prod_{i
$$
= \mathbb{E}_{\widetilde{\pi}\perp\perp\pi}\prod_{O\in\mathcal{O}} X_O \quad X_O \triangleq \prod_{(i,j)\in O} X_{ij}
$$
$$

O: disjoint orbits of edge permutation σ^{E} with $\sigma \triangleq \pi^{-1} \circ \widetilde{\pi}$

$$
\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right] = \mathbb{E}_{\widetilde{\pi}\perp\perp\pi}\mathbb{E}_{\mathcal{Q}}\prod_{O\in\mathcal{O}}X_O = \mathbb{E}_{\widetilde{\pi}\perp\perp\pi}\prod_{O\in\mathcal{O}}\mathbb{E}_{\mathcal{Q}}\left[X_O\right]
$$

$$
\mathbb{E}_{\mathcal{Q}}\left[X_O\right] = \begin{cases} \frac{1}{1-\rho^{2|O|}} & \text{Gaussian} \\ 1+\rho^{2|O|} & \text{Erdős-Rényi} \end{cases}
$$

Failure of second-moment

We show

$$
\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right]=\begin{cases}1+o(1) & \text{ if } \rho^2\leq \frac{(2-\epsilon)\log n}{n} \\ +\infty & \text{ if } \rho^2\geq \frac{(2+\epsilon)\log n}{n}\end{cases}
$$

- Gaussian: suboptimal by a factor of 2
- ER graphs: suboptimal by an unbounded factor when $p = o(1)$

Failure of second-moment

We show

$$
\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right] = \begin{cases} 1+o(1) & \text{ if } \rho^2 \le \frac{(2-\epsilon)\log n}{n} \\ +\infty & \text{ if } \rho^2 \ge \frac{(2+\epsilon)\log n}{n} \end{cases}
$$

- Gaussian: suboptimal by a factor of 2
- ER graphs: suboptimal by an unbounded factor when $p = o(1)$

Obstruction from short orbits

$$
\mathbb{E}_{(A,B)\sim\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right] = \mathbb{E}_{\pi\perp\!\!\!\perp\widetilde{\pi}}\left[\prod_{O\in\mathcal{O}}\mathbb{E}_{\mathcal{Q}}\left[X_O\right]\right]\stackrel{\widetilde{\pi}=\pi}{\geq} \frac{1}{n!}\left(1+\rho^2\right)^{\binom{n}{2}}
$$

Failure of second-moment

We show

$$
\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right]=\begin{cases}1+o(1) & \text{ if } \rho^2\leq \frac{(2-\epsilon)\log n}{n} \\ +\infty & \text{ if } \rho^2\geq \frac{(2+\epsilon)\log n}{n}\end{cases}
$$

- Gaussian: suboptimal by a factor of 2
- ER graphs: suboptimal by an unbounded factor when $p = o(1)$

Obstruction from short orbits

$$
\mathbb{E}_{(A,B)\sim \mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2\right] = \mathbb{E}_{\pi\perp \widetilde{\pi}}\left[\prod_{O\in \mathcal{O}}\mathbb{E}_{\mathcal{Q}}\left[X_O\right]\right]\stackrel{\widetilde{\pi}=\pi}{\geq} \frac{1}{n!}\left(1+\rho^2\right)^{\binom{n}{2}}
$$

Atypically large magnitude of $\prod_{O \in \mathcal{O}: |O| = k} X_O$ for short orbits of length $k \leq \log n \Rightarrow$ second-moment blows up

Let $\mathcal E$ denote an event that holds whp under $\mathcal P$:

$$
\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2 \mathbf{1}_{\{\mathcal{E}\}}\right] = O(1) \qquad \implies \text{TV}(\mathcal{P}, \mathcal{Q}) \le 1 - \Omega(1)
$$
\n
$$
\text{Strong detection is impossible}
$$

Strong detection is impossible

$$
\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{\mathcal{P}(A,B)}{\mathcal{Q}(A,B)}\right)^2 \mathbf{1}_{\{\mathcal{E}\}}\right] = 1 + o(1) \qquad \Longrightarrow \text{TV}(\mathcal{P}, \mathcal{Q}) = o(1)
$$

Weak detection is impossible

Truncated second-moment: Gaussian model

It suffices to consider $k = 1$:

$$
Y \triangleq \prod_{O \in \mathcal{O}: |O| = 1} X_O \approx \exp\left(-\rho^2 \binom{n_1}{2} + 2\rho e_{A^\pi \wedge B}(F)\right)
$$

• F is the set of fixed points of $\sigma \triangleq \pi^{-1} \circ \tilde{\pi}$ and $n_1 = |F|$

•
$$
e_{A^{\pi} \wedge B}(F) \triangleq \sum_{(i,j) \in F} A_{\pi(i)\pi(j)} B_{ij}
$$

Truncated second-moment: Gaussian model

It suffices to consider $k = 1$:

$$
Y \triangleq \prod_{O \in \mathcal{O}: |O| = 1} X_O \approx \exp\left(-\rho^2 \binom{n_1}{2} + 2\rho e_{A^\pi \wedge B}(F)\right)
$$

• F is the set of fixed points of $\sigma \triangleq \pi^{-1} \circ \tilde{\pi}$ and $n_1 = |F|$

•
$$
e_{A^{\pi} \wedge B}(F) \triangleq \sum_{(i,j) \in F} A_{\pi(i)\pi(j)} B_{ij}
$$

• Under $\mathcal{P} \colon e_{A^{\pi} \wedge B}(S)$ concentrates on $\rho\binom{|S|}{2}$ uniformly over all S when $|S|$ is large

Truncated second-moment: Gaussian model

It suffices to consider $k = 1$:

$$
Y \triangleq \prod_{O \in \mathcal{O}: |O| = 1} X_O \approx \exp\left(-\rho^2 \binom{n_1}{2} + 2\rho e_{A^\pi \wedge B}(F)\right)
$$

• F is the set of fixed points of $\sigma \triangleq \pi^{-1} \circ \tilde{\pi}$ and $n_1 = |F|$

•
$$
e_{A^{\pi} \wedge B}(F) \triangleq \sum_{(i,j) \in F} A_{\pi(i)\pi(j)} B_{ij}
$$

- Under $\mathcal{P} \colon e_{A^{\pi} \wedge B}(S)$ concentrates on $\rho\binom{|S|}{2}$ uniformly over all S when $|S|$ is large
- On this typical event $\mathcal E$ under $\mathcal P$, when $|F|$ is large,

$$
\mathbb{E}_{\mathcal{Q}}\left[Y\mathbf{1}_{\{\mathcal{E}\}}\right] \lesssim e^{-\rho^2 \binom{n_1}{2}} \mathbb{E}_{\mathcal{Q}}\left[e^{2\rho e_A \pi \wedge B(F)}\mathbf{1}_{\left\{e_A \pi \wedge B(F) \leq \rho \binom{n_1}{2}\right\}}\right]
$$

$$
\approx \exp\left(\frac{\rho^2}{2}\binom{n_1}{2}\right) \text{ (Gain a factor of 2)}
$$

Again it suffices to consider $k = 1$:

$$
Y \triangleq \prod_{O \in \mathcal{O}: |O| = 1} X_O \approx \left(\frac{1}{p}\right)^{2e_{A^{\pi} \wedge B}(F)}
$$

- Under \mathcal{P} : $e_{A^{\pi} \wedge B}(S)$ concentrates on $\binom{|S|}{2} ps^2$ uniformly over all S when $|S|$ is large
- On this typical event $\mathcal E$ under $\mathcal P$, when $|F|$ is large,

$$
\mathbb{E}_{\mathcal{Q}}\left[Y\mathbf{1}_{\{\mathcal{E}\}}\right] \lesssim \mathbb{E}_{\mathcal{Q}}\left[\left(\frac{1}{p}\right)^{2e_{A^{\pi}\wedge B}(F)}\mathbf{1}_{\left\{e_{A^{\pi}\wedge B}(F) \leq \binom{|F|}{2}ps^2\right\}}\right]
$$

Truncated second-moment: sparse Erdős-Rényi

Need to consider $k = \Theta(\log n)$. It can be shown

• Long orbits:

$$
\mathbb{E}_{\mathcal{Q}}\left[\prod_{|O|>k} X_O\right] \le \left(1+\rho^k\right)^{\frac{n^2}{k}} = 1+o(1)
$$

• Short incomplete orbits:

$$
\mathbb{E}_{\mathcal{Q}}\left[X_O \mid O \not\subset E\left(A \wedge B^{\pi}\right)\right] \leq 1
$$

• Short complete orbits:

$$
X_O = \left(\frac{1}{p}\right)^{2|O|}, \quad \forall O \subset E \left(A \wedge B^{\pi}\right)
$$

Suffices to consider subgraph $H_k \triangleq \bigcup_{O:|O| \leq k, O \subset E(A \wedge B^{\pi})} O$

Truncated second-moment: sparse Erdős-Rényi

• If
$$
nps^2 \leq 1 - \omega(n^{-1/3})
$$
:

 $\mathcal{E} \triangleq \{A \wedge B^{\pi} \text{ is a pseudoforest}\}\$

• If
$$
nps^2 \leq \lambda^* - \epsilon
$$
:

Then

 $\mathcal{E} \triangleq \{\textsf{The subgraph density of } A \wedge B^{\pi} \textsf{ is smaller than } \gamma(\lambda^*)\}$

$$
\mathbb{E}_{\mathcal{Q}}\left[\prod_{O\in\mathcal{O}}X_O\mathbf{1}_{\{\mathcal{E}\}}\right] \leq (1+o(1))\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{1}{p}\right)^{2e(H_k)}\mathbf{1}_{\{H_k \text{ is admissible}\}}\right]
$$

$$
= (1+o(1))\sum_{H\in\mathcal{H}_k} s^{2e(H)} \quad \text{(generating function)}
$$

 \mathcal{H}_k : The set of all admissible H_k

Truncated second-moment: sparse Erdős-Rényi

• If
$$
nps^2 \leq 1 - \omega(n^{-1/3})
$$
:

 $\mathcal{E} \triangleq \{A \wedge B^{\pi} \text{ is a pseudoforest}\}\$

• If
$$
nps^2 \leq \lambda^* - \epsilon
$$
:

Then

 $\mathcal{E} \triangleq \{\textsf{The subgraph density of } A \wedge B^{\pi} \textsf{ is smaller than } \gamma(\lambda^*)\}$

$$
\mathbb{E}_{\mathcal{Q}}\left[\prod_{O\in\mathcal{O}}X_O\mathbf{1}_{\{\mathcal{E}\}}\right] \leq (1+o(1))\mathbb{E}_{\mathcal{Q}}\left[\left(\frac{1}{p}\right)^{2e(H_k)}\mathbf{1}_{\{H_k \text{ is admissible}\}}\right]
$$

$$
= (1+o(1))\sum_{H\in\mathcal{H}_k}s^{2e(H)} \quad \text{(generating function)}
$$

 \mathcal{H}_k : The set of all admissible H_k

Key remaining challenge: enumerate \mathcal{H}_k using orbit structure

Analysis

- Proof of detection thresholds
- Proof of partial recovery thresholds
- Proof of exact recovery thresholds

• Gaussian or dense Erdős-Rényi: analyzing MLE (QAP)

$$
\widehat{\pi}_{\mathrm{ML}} \in \arg\max_{\pi \in S_n} \sum_{i < j} A_{ij} B_{\pi(i)\pi(j)}
$$

• Sparse Erdős-Rényi: Analyze densest subgraph in intersection graph $A^{\pi} \wedge B$

Proof of negative results: Gaussian model

1 Characterization of mutual info by truncated 2nd moment method:

$$
I(\pi^*; A, B) = \binom{n}{2} I(\rho) - \mathsf{KL}(\mathcal{P} \| \mathcal{Q}) \approx \binom{n}{2} I(\rho)
$$

where $I(\rho) = \frac{1}{2} \log \frac{1}{1-\rho^2}$ is the mutual info between two ρ -correlated standard Gaussians

Proof of negative results: Gaussian model

1 Characterization of mutual info by truncated 2nd moment method:

$$
I(\pi^*; A, B) = \binom{n}{2} I(\rho) - \mathsf{KL}(\mathcal{P} \| \mathcal{Q}) \approx \binom{n}{2} I(\rho)
$$

where $I(\rho) = \frac{1}{2} \log \frac{1}{1-\rho^2}$ is the mutual info between two ρ -correlated standard Gaussians

2 An area theorem based on I-MMSE formula [Guo-Shamai-Verdú '05]

$$
I(\pi^*; A, B) = \frac{1}{2} \int_0^{\rho^2} \frac{\text{mmse}_{\theta}(A^{\pi^*}|A, B)}{(1 - \theta)^2} d\theta
$$

Proof of negative results: Gaussian model

1 Characterization of mutual info by truncated 2nd moment method:

$$
I(\pi^*; A, B) = \binom{n}{2} I(\rho) - \mathsf{KL}(\mathcal{P} \| \mathcal{Q}) \approx \binom{n}{2} I(\rho)
$$

where $I(\rho) = \frac{1}{2} \log \frac{1}{1-\rho^2}$ is the mutual info between two ρ -correlated standard Gaussians

2 An area theorem based on I-MMSE formula [Guo-Shamai-Verdú '05]

$$
I(\pi^*; A, B) = \frac{1}{2} \int_0^{\rho^2} \frac{\text{mmse}_{\theta}(A^{\pi^*}|A, B)}{(1 - \theta)^2} d\theta
$$

3 Impossibility of estimating A^{π^*} in squared error \implies Impossibility of estimating π^* in overlap

Proof of negative results: Erdős-Rényi

1 Characterization of mutual info by truncated 2nd moment method:

$$
I(\pi^*; A, B) = \binom{n}{2} I(p, s) - \mathsf{KL}(\mathcal{P} \| \mathcal{Q}) \approx \binom{n}{2} I(p, s)
$$

Proof of negative results: Erdős-Rényi

1 Characterization of mutual info by truncated 2nd moment method:

$$
I(\pi^*; A, B) = \binom{n}{2} I(p, s) - \mathsf{KL}(\mathcal{P} \| \mathcal{Q}) \approx \binom{n}{2} I(p, s)
$$

2 An "approximate" area theorem: Find an interpolating model P_{θ} such that $P_0 = Q$ and $P_1 = P$, and

$$
I(\pi^*; A, B) \approx {n \choose 2} I(p, s) - s \int_0^1 \theta \cdot \text{mmse}_{\theta}(A^{\pi^*}|A, B) d\theta
$$

Proof of negative results: Erdős-Rényi

1 Characterization of mutual info by truncated 2nd moment method:

$$
I(\pi^*; A, B) = \binom{n}{2} I(p, s) - \mathsf{KL}(\mathcal{P} \| \mathcal{Q}) \approx \binom{n}{2} I(p, s)
$$

2 An "approximate" area theorem: Find an interpolating model P_{θ} such that $P_0 = Q$ and $P_1 = P$, and

$$
I(\pi^*; A, B) \approx {n \choose 2} I(p, s) - s \int_0^1 \theta \cdot {\sf mmse}_{\theta}(A^{\pi^*}|A, B) d\theta
$$

3 Impossibility of estimating A^{π^*} in squared error \implies Impossibility of estimating π^* in overlap

Analysis

- Proof of detection thresholds
- Proof of partial recovery thresholds
- Proof of exact recovery thresholds

Proof of exact recovery thresholds: Positive results

• Decompose the likelihood difference via edge orbits

$$
\left\langle A^{\pi} - A^{\pi^*}, B \right\rangle
$$

= $\sum_{O \in \mathcal{O} \setminus \mathcal{O}_1} \underbrace{\sum_{(i,j) \in O} A_{\pi(i)\pi(j)} B_{ij}}_{X_O} - \sum_{O \in \mathcal{O} \setminus \mathcal{O}_1} \underbrace{\sum_{(i,j) \in O} A_{\pi^*(i)\pi^*(j)} B_{ij}}_{Y_O}$

- Apply large deviation analysis:
	- ► For π far away from π^* : bound $\sum_O X_O$ and $\sum_O Y_O$ separately
	- For π close to π^* : bound $\sum_O(X_O Y_O)$ directly
- The contribution of longer edge orbits can be effectively bounded by that of the 2-edge orbits

$$
M_{|O|} \triangleq \mathbb{E}\left[\exp(tX_O)\right] \le M_2^{|O|/2}, \quad \forall |O| \ge 2
$$

- Suffices to show the failure of MLE
- The bottleneck happens when π' differs from π by a 2-node orbit (i, j) , for which the likelihood difference simplifies to

$$
\left\langle A^{\pi} - A^{\pi^*}, B \right\rangle
$$

=
$$
- \sum_{k \in [n] \setminus \{i,j\}} \left(A_{\pi^*(i)\pi^*(k)} - A_{\pi^*(j)\pi^*(k)} \right) \left(B_{ik} - B_{jk} \right)
$$

• Prove the existence of (i, j) for which $\left\langle A^{\pi} - A^{\pi^*}, B \right\rangle \geq 0$ whp

Concluding remarks

Concluding remarks

Reference

- Y. Wu, J. Xu, & S. H. Yu, Testing correlation of unlabeled random graphs, Annals of Applied Probability, arXiv:2008.10097.
- Y. Wu, J. Xu, & S. H. Yu, Settling the sharp reconstruction thresholds of random graph matching, IEEE Transactions on Information Theory, arXiv:2102.00082.
- J. Ding & H. Du, Detection threshold for correlated Erdős-Rényi graphs via densest subgraphs. arXiv:2203.14573.
- J. Ding & H. Du, Matching recovery threshold for correlated random graphs. arXiv:2205.14650.