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Graph matching (network alignment)

Goal: find a mapping between two node sets that maximally aligns the
edges (i.e. minimizes # of adjacency disagreements)

Quadratic Assignment Problem (QAP) : max
π∈Sn

∑
i<j

AijBπ(i)π(j)

Noiseless case: reduce to graph isomorphism

Jiaming Xu (Duke) Random Graph Matching 2
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Application 1: Network de-anonymization

Alice

Bob

Charlie

?

?

?

• Successfully de-anonymize Netflix dataset by matching it to IMDB
[Narayanan-Shmatikov ’08]

• Correctly identify 30.8% of shared users between Twitter and Flickr
[Narayanan-Shmatikov ’09]
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Application 2: Protein-Protein Interaction network

Kazemi et al. BMC Bioinformatics  (2016) 17:527 Page 6 of 16

proposed in [59]. ANBS for two graphs G1(V1,E1) and
G2(V2,E2) under the alignment π is defined as follows.

ANBS(π) =
|V1|−1

∑

i∈V1(π)

BlastBit(i,π(i))√
BlastBit(i, i)BlastBit(π(i),π(i))

.

Pathway comparisonmeasures
In order to evaluate the performance of algorithms in
aligning biological pathways, we introduce a new mea-
sure in this section. This measure captures the quality of
alignments based on a higher level of functional and struc-
tural similarities (beyond the introducedmeasures such as
the similarity of GO terms and the number of conserved
interactions).
It is known that there are many biological pathways

with similar functions in different species [12]. The KEGG
PATHWAY database [60] provides a set of experimentally
found biological pathways. In this database, a pathway is
called by the name of a species (e.g., hsa for Homo sapi-
ens), followed by a number. The pathways with the same
number have the same function in different species. For
example, hsa03040, mmu03040, dme03040 and sce03040
are in Homo sapiens (human), Mus musculus (mouse),
Drosophila melanogaster (fruit fly) and Saccharomyces
cerevisiae (budding yeast), respectively. These pathways
have the same functions.2 Assume PWi,1 denotes the set of
proteins from a pathway with number i in the PPI network
of the first species (i.e.,G1). Similarly, we define PWi,2. For
pathway i, �π ,i denotes the number of conserved inter-
actions between the proteins in this pathway under the
alignment π , i.e., �π ,i = EG1[PWi,1] ∩π−1(EG2[PWi,2]). Note
that we are looking for pathways that are present in both
aligned species.
We say a protein u from a pathway is aligned correctly, if

it is mapped to a protein v from a pathway with the same
function. For pathway i, we define the number of correctly
mapped proteins as |PWi,1 ∩ π−1(PWi,2)|. This measure
corresponds to the number of proteins that, from path-
way i in the first species, are mapped to a protein from
the same pathway in the second species. For pathway i, we
define the accuracy as

accπ ,i = 2|PWi,1 ∩ π−1(PWi,2)|
|PWi,1| + |PWi,2| . (2)

This measure corresponds to the fraction of correctly
mapped proteins in pathway i.
We conjecture that a good alignment algorithm should

align proteins from pathways with the same functions
across species, and many interactions among these pro-
teins are conserved. To quantify this expectation, we set
a threshold over the structural similarity of aligned path-
ways to consider them as a correct alignment. We say that

an alignment π successfully aligns a pathway i, if there are
at least δ conserved interactions under the alignment π

for proteins in that pathway, i.e., if �π ,i ≥ δ. This thresh-
olding guarantees that the structural similarity of aligned
pathways are more than a minimum value (here, δ con-
served interactions). To evaluate the performance of an
algorithm based on this thresholding criterion, we define
a set of measures as follows.

1. We consider pathways with at least δ (say δ ≥ 2)
interactions in each of the species. Let “#PWδ”
denote the number of such pathways.

2. Alignment π successfully aligns pathway i, if
�π ,i ≥ δ. The variable “#FPWδ” refers to the number
of successfully aligned pathways. We define the recall
as

recallπ ,δ = #FPWδ

#PWδ

. (3)

3. Again, for a correctly aligned pathway i, we define
accπ ,δ,i similar to (2).

The averages over all i of all the accπ ,i and accπ ,δ,i values
are represented by accπ and accπ ,δ , respectively. Figure 2
provides a toy example of how to calculate the pathway
alignment measures.

Results
In this section, we compare PROPER with the main state-
of-the-art network alignment algorithms, specifically (i)
with L-GRAAL as the most recent member of GRAAL
family that takes into account both sequence and struc-
tural similarities [23]; (ii) with MAGNA++ that tries to
maximize one of the EC, ICS or S3 measures [33, 34]
(In our experiments we run MAGNA++ in two different

Fig. 2 In this figure, two example PPI networks are given. Green nodes
are proteins which are in the same pathway (i.e., a pathway with the
same number in both species). Dotted lines represent the alignment π
between these two networks. Under this alignment, there are five
conserved interactions between proteins in this pathway (shown by
thick black edges in each network). Also, the number of correctly
mapped proteins is four. Therefore, the accuracy of aligning this
pathway is accπ ,i = 2×4

6+5 , where there are six and five proteins from
this pathway in each species, respectively

[Kazemi-Hassani-Grossglauser-Modarres ’16]

Graph matching for aligning PPI networks between different species, to
identify conserved components and genes with common function
[Singh-Xu-Berger ’08]
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Application 3: Computer vision

A fundamental problem in computer vision: Detect and match similar
objects that undergo different deformations

Shape REtrieval Contest (SHREC) dataset [Lähner et al ’16]

3-D shapes → geometric graphs (features → nodes, distances → edges)
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Two key challenges

• Statistical: two graphs may not be the same

• Computational: # of possible node mappings is n! (100! ≈ 10158)
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Beyond worst-case intractability

• NP-hard for matching two graphs in worst case

• However, real networks are not arbitrary and have latent structures

• Recent surge of interests on the average-case analysis of matching
two correlated random graphs [Feizi at el.’16, Lyzinski at el’16,

Cullina-Kiyavash’16,17, Ding-Ma-Wu-Xu’18, Barak-Chou-Lei-Schramm-Sheng’19,

Fan-Mao-Wu-Xu’19a,19b, Ganassali-Massoulié’20, Hall-Massoulié’20, . . .]

• Focus on correlated Erdős-Rényi graphs model [Pedarsani-Grossglauser ’11]
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Correlated Erdős-Rényi graphs model G(n, p, s)
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• (Aπ(i)π(j), Bij) are i.i.d. pairs of correlated Bern(ps)

• Key parameter nps2: average degree of intersection graph A ∧B∗;
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Correlated Gaussian model

B = ρAπ +
√

1− ρ2Z ,
where

• A and Z are independent Gaussian Wigner matrices with i.i.d.
standard normal entries;

• Aπ = (Aπ(i)π(j)) denote the relabeled version of A

• Conditional on π, for any 1 ≤ i < j ≤ n,

(Aπ(i)π(j), Bij)
i.i.d.∼ N

(
( 0
0 ) ,
(

1 ρ
ρ 1

))
.
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Two statistical tasks: detection and estimation

• Detection:
I H0: A and B are two independent Erdős-Rényi graphs G(n, ps)
I H1: A and B are two correlated Erdős-Rényi graphs G(n, p, s)
I Test between H0 and H1 based on observation of (A,B)

• Estimation:
I Observe two correlated Erdős-Rényi graphs A,B ∼ G(n, p, s)
I Recover the underlying true vertex correspondence π

Focus of this lecture

What are the information-theoretic limits of detection and estimation?

10+ years of development:
[Pedarsani-Grossglauser ’11], [Cullina-Kiyavash ’16,17], [Hall-Massoulié ’20], [Ganassali ’20],
[Wu-X.-Yu ’20,21], [Ganassali-Lelarge-Massoulié ’21], [Ding-Du ’21 22]
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I Observe two correlated Erdős-Rényi graphs A,B ∼ G(n, p, s)
I Recover the underlying true vertex correspondence π

Focus of this lecture

What are the information-theoretic limits of detection and estimation?

10+ years of development:
[Pedarsani-Grossglauser ’11], [Cullina-Kiyavash ’16,17], [Hall-Massoulié ’20], [Ganassali ’20],
[Wu-X.-Yu ’20,21], [Ganassali-Lelarge-Massoulié ’21], [Ding-Du ’21 22]
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Maximum likelihood estimation as quadratic assignment

Maximum likelihood estimation reduces to quadratic assignment (QAP):

π̂ML ∈ arg max
π

∑
i<j

AijBπ(i)π(j) .

• QAP is NP-hard in worst case

• How much does π̂ML have in common with π∗?

overlap(π, π̂) ,
1

n

∣∣∣∣ {i ∈ [n] : π̂(i) = π(i)}
∣∣∣∣

Jiaming Xu (Duke) Random Graph Matching 11



Sharp threshold for detection: Gaussian

Theorem (Wu-X.-Yu ’20)

nρ2 ≥ (4 + ε) log n =⇒ TV (P,Q) = 1− o(1) (test error=o(1))

nρ2 ≤ (4− ε) log n =⇒ TV (P,Q) = o(1) (test error=1− o(1))

1

lim
n→∞

TV (P ,Q)

0 lim
n→∞

nρ2

logn
4

weak detection
impossible

test error=1− o(1)

strong detection
possible

test error=o(1)
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Sharp threshold for recovery: Gaussian model

Theorem (Wu-X.-Yu ’21)

nρ2 ≥ (4 + ε) log n =⇒ π̂ML = π w.h.p

nρ2 ≤ (4− ε) log n =⇒ overlap (π̂, π) = o(1), w.h.p, ∀ estimator π̂

1

E [overlap (π̂, π)]

0
nρ2

logn4

Partial recovery

impossible

“Nothing”

Exact recovery

possible (MLE)

“All”

• Exact recovery threshold is derived in [Ganassali ’20]

• Exhibits a stronger form of “all or nothing” phenomenon
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Sharp detection threshold: dense Erdős-Rényi graphs

Theorem (Wu-X.-Yu ’20)

Suppose n−o(1) ≤ p ≤ 1− Ω(1). Then,

nps2 ≥ (2 + ε) log n

log 1
p − 1 + p

=⇒ TV (P,Q) = 1− o (1) (test error=o(1))

nps2 ≤ (2− ε) log n

log 1
p − 1 + p

=⇒ TV (P,Q) = o(1) (test error=1− o(1))

1

lim
n→∞

TV (P ,Q)

0
lim
n→∞

nps2(log(1/p)−1+p)
log n2

weak detection
impossible

test error=1− o(1)

strong detection
possible

test error=o(1)
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Sharp recovery threshold: dense Erdős-Rényi

Theorem (Wu-X.-Yu ’21)

Suppose n−o(1) ≤ p ≤ 1− Ω(1). Then,

nps2 ≥ (2 + ε) log n

log 1
p − 1 + p

=⇒ overlap (π̂ML, π) = 1− o(1) w.h.p

nps2 ≤ (2− ε) log n

log 1
p − 1 + p

=⇒ overlap (π̂, π) = o(1), w.h.p, ∀ estimator π̂

1

E [overlap (π̂, π)]

0
nps2(log(1/p)−1+p)

log n2

Partial recovery

impossible

“Nothing”

Almost exact recovery

possible (MLE)

“All”
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Sharp recovery threshold: dense Erdős-Rényi

Theorem (Wu-X.-Yu ’21)

Suppose n−o(1) ≤ p ≤ 1− Ω(1). Then,

nps2 ≥ (2 + ε) log n

log 1
p − 1 + p

=⇒ overlap (π̂ML, π) = 1− o(1) w.h.p

nps2 ≤ (2− ε) log n

log 1
p − 1 + p

=⇒ overlap (π̂, π) = o(1), w.h.p, ∀ estimator π̂

Interpretation of threshold:

• I(π;A,B) ≈
(
n
2

)
× ps2

(
log

1

p
− 1 + p

)
︸ ︷︷ ︸

mutual info btw two correlated edges

• H(π) ≈ n log n

• Threshold is at I(π;A,B) ≈ H(π)

Jiaming Xu (Duke) Random Graph Matching 15



Sharp detection threshold: sparse Erdős-Rényi

Theorem (Ding-Du ’22a)

Suppose p = n−α for α ∈ (0, 1) and λ∗ = γ−1(1/α).

nps2 ≥ λ∗ + ε =⇒ TV (P,Q) = 1− o(1) (test error=o(1))

nps2 ≤ λ∗ − ε =⇒ TV (P,Q) = o(1) (test error=1− o(1))

• Sharpened our threshold at nps2 = Θ(1) [Wu-X.-Yu ’20]

• γ : [1,∞)→ [1,∞) is given by the densest subgraph problem in
Erdős-Rényi G(n, λn) [Hajek ’90, Anantharam-Salez’ 16]

max
∅6=U⊂[n]

|E(U)|
|U | → γ(λ)

• When np = Θ(1), there is no zero-one phase transition.
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Sharp recovery threshold: sparse Erdős-Rényi

Theorem (Ding-Hu ’22b)

Suppose p = n−α for α ∈ (0, 1] and λ∗ = γ−1(1/α).

nps2 ≥ λ∗ + ε =⇒ overlap (π̂ML, π) ≥ Ω(1) w.h.p.

nps2 ≤ λ∗ − ε =⇒ overlap (π̂, π) = o(1) w.h.p. ∀π̂

• The negative result of α = 1 is proved in [Ganassali-Lelarge-Massoulié ’21]

• Sharpen our partial recovery threshold at nps2 = Θ(1) [Wu-X.-Yu ’21]

• “All-or-nothing” phenomenon does not exist, as almost exact
recovery (overlap = 1− o(1)) requires
nps2 →∞ [Cullina-Kiyavash-Mittal-Poor ’19]

Jiaming Xu (Duke) Random Graph Matching 17
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Exact recovery threshold

Theorem (Wu-X.-Yu ’21)

Suppose p ≤ 1− Ω(1). Then

nps2 ≥ (1 + ε) log n(
1−√p

)2 =⇒ overlap (π̂ML, π) = 1 w.h.p.

nps2 ≤ (1− ε) log n(
1−√p

)2 =⇒ overlap (π̂, π) 6= 1 w.h.p. ∀ π̂ .

• p = o(1): reduces to the connectivity threshold of the intersection
graph A ∧B∗ ∼ G(n, ps2) [Cullina-Kiyavash’16,17]

• p = Ω(1): strictly higher than the connectivity threshold

Jiaming Xu (Duke) Random Graph Matching 18
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Analysis

• Proof of detection thresholds

• Proof of partial recovery thresholds

• Proof of exact recovery thresholds

Jiaming Xu (Duke) Random Graph Matching 19



Proof of detection thresholds: Positive results

• Gaussian or dense Erdős-Rényi: analyzing QAP statistic

max
π∈Sn

∑
i<j

AijBπ(i)π(j) (# of common edges)

• Sparse Erdős-Rényi: analyzing densest subgraph statistic

max
π∈Sn

max
U⊂[n]:|U |≥n/ logn

Eπ(U)

|U | ,

where Eπ(U) is the set of edges induced by vertices in U in
intersection graph Aπ ∧B
• Standard first-moment computation

Jiaming Xu (Duke) Random Graph Matching 20



Proof of detection thresholds: Negative results

Second-moment method

EQ

[(P(A,B)

Q(A,B)

)2
]

= O(1) =⇒ TV(P,Q) ≤ 1− Ω(1)

Strong detection is impossible

EQ

[(P(A,B)

Q(A,B)

)2
]

= 1 + o(1) =⇒ TV(P,Q) = o(1)

Weak detection is impossible
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Cycle (orbit) decomposition

• Node permutation σ acts on [n]
• Edge permutation σE acts on

(
[n]
2

)
: σE((i, j)) , (σ(i), σ(j))

Example: n = 6 and σ = (1)(23)(456):

σ:
1

2

3

4

56

σE:
(2, 3)

(1, 2)

(1, 3)

(1, 4)

(1, 5)(1, 6)

(4, 5)

(5, 6)(4, 6)

(2, 4)

(3, 5)

(2, 6)

(3, 4)

(2, 5)

(3, 6)

32 1

2

3

1

4

5

6 6
4

5 2

3
4

5

6
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Second-moment calculation via orbit decomposition

(P(A,B)

Q(A,B)

)2

=

(
Eπ
[P(A,B|π)

Q(A,B)

])2

= Eπ̃⊥⊥π
∏
i<j

Xij Xij ,
P(Bπ(i)π(j)|Aij)P(Bπ̃(i)π̃(j)|Aij)
Q(Bπ(i)π(j))Q(Bπ̃(i)π̃(j))

= Eπ̃⊥⊥π
∏
O∈O

XO XO ,
∏

(i,j)∈O
Xij

O: disjoint orbits of edge permutation σE with σ , π−1 ◦ π̃

EQ

[(P(A,B)

Q(A,B)

)2
]

= Eπ̃⊥⊥πEQ
∏
O∈O

XO = Eπ̃⊥⊥π
∏
O∈O

EQ [XO]

EQ [XO] =

{
1

1−ρ2|O| Gaussian

1 + ρ2|O| Erdős-Rényi
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Failure of second-moment

We show

EQ

[(P(A,B)

Q(A,B)

)2
]

=

{
1 + o(1) if ρ2 ≤ (2−ε) logn

n

+∞ if ρ2 ≥ (2+ε) logn
n

• Gaussian: suboptimal by a factor of 2

• ER graphs: suboptimal by an unbounded factor when p = o(1)

Obstruction from short orbits

E(A,B)∼Q

[(P(A,B)

Q(A,B)

)2
]

= Eπ⊥⊥π̃

[∏
O∈O

EQ [XO]

]
π̃=π
≥ 1

n!

(
1 + ρ2

)(n2)
Atypically large magnitude of

∏
O∈O:|O|=kXO for short orbits of length

k . log n ⇒ second-moment blows up
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Truncated second-moment

Let E denote an event that holds whp under P:

EQ

[(P(A,B)

Q(A,B)

)2

1{E}

]
= O(1) =⇒ TV(P,Q) ≤ 1− Ω(1)

Strong detection is impossible

EQ

[(P(A,B)

Q(A,B)

)2

1{E}

]
= 1 + o(1) =⇒ TV(P,Q) = o(1)

Weak detection is impossible
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Truncated second-moment: Gaussian model

It suffices to consider k = 1:

Y ,
∏

O∈O:|O|=1

XO ≈ exp

(
−ρ2

(
n1
2

)
+ 2ρeAπ∧B(F )

)

• F is the set of fixed points of σ , π−1 ◦ π̃ and n1 = |F |
• eAπ∧B(F ) ,

∑
(i,j)∈F Aπ(i)π(j)Bij

• Under P: eAπ∧B(S) concentrates on ρ
(|S|

2

)
uniformly over all S

when |S| is large

• On this typical event E under P, when |F | is large,

EQ
[
Y 1{E}

]
. e−ρ

2(n12 )EQ
[
e2ρeAπ∧B(F )1{eAπ∧B(F )≤ρ(n12 )}

]
≈ exp

(
ρ2

2

(
n1
2

))
(Gain a factor of 2)

Jiaming Xu (Duke) Random Graph Matching 26



Truncated second-moment: Gaussian model

It suffices to consider k = 1:

Y ,
∏

O∈O:|O|=1

XO ≈ exp

(
−ρ2

(
n1
2

)
+ 2ρeAπ∧B(F )

)

• F is the set of fixed points of σ , π−1 ◦ π̃ and n1 = |F |
• eAπ∧B(F ) ,

∑
(i,j)∈F Aπ(i)π(j)Bij

• Under P: eAπ∧B(S) concentrates on ρ
(|S|

2

)
uniformly over all S

when |S| is large

• On this typical event E under P, when |F | is large,

EQ
[
Y 1{E}

]
. e−ρ

2(n12 )EQ
[
e2ρeAπ∧B(F )1{eAπ∧B(F )≤ρ(n12 )}

]
≈ exp

(
ρ2

2

(
n1
2

))
(Gain a factor of 2)

Jiaming Xu (Duke) Random Graph Matching 26



Truncated second-moment: Gaussian model

It suffices to consider k = 1:

Y ,
∏

O∈O:|O|=1

XO ≈ exp

(
−ρ2

(
n1
2

)
+ 2ρeAπ∧B(F )

)

• F is the set of fixed points of σ , π−1 ◦ π̃ and n1 = |F |
• eAπ∧B(F ) ,

∑
(i,j)∈F Aπ(i)π(j)Bij

• Under P: eAπ∧B(S) concentrates on ρ
(|S|

2

)
uniformly over all S

when |S| is large

• On this typical event E under P, when |F | is large,

EQ
[
Y 1{E}

]
. e−ρ

2(n12 )EQ
[
e2ρeAπ∧B(F )1{eAπ∧B(F )≤ρ(n12 )}

]
≈ exp

(
ρ2

2

(
n1
2

))
(Gain a factor of 2)

Jiaming Xu (Duke) Random Graph Matching 26



Truncated second-moment: dense Erdős-Rényi

Again it suffices to consider k = 1:

Y ,
∏

O∈O:|O|=1

XO ≈
(

1

p

)2eAπ∧B(F )

• Under P: eAπ∧B(S) concentrates on
(|S|

2

)
ps2 uniformly over all S

when |S| is large

• On this typical event E under P, when |F | is large,

EQ
[
Y 1{E}

]
. EQ

[(
1

p

)2eAπ∧B(F )

1{
eAπ∧B(F )≤(|F |2 )ps2

}
]
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Truncated second-moment: sparse Erdős-Rényi

Need to consider k = Θ(log n). It can be shown

• Long orbits:

EQ

 ∏
|O|>k

XO

 ≤ (1 + ρk
)n2

k
= 1 + o(1)

• Short incomplete orbits:

EQ [XO | O 6⊂ E (A ∧Bπ)] ≤ 1

• Short complete orbits:

XO =

(
1

p

)2|O|
, ∀O ⊂ E (A ∧Bπ)

Suffices to consider subgraph Hk , ∪O:|O|≤k,O⊂E(A∧Bπ)O
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Truncated second-moment: sparse Erdős-Rényi

• If nps2 ≤ 1− ω(n−1/3):

E , {A ∧Bπ is a pseudoforest}
• If nps2 ≤ λ∗ − ε:

E , {The subgraph density of A ∧Bπ is smaller than γ(λ∗)}

Then

EQ

[∏
O∈O

XO1{E}

]
≤ (1 + o(1))EQ

[(
1

p

)2e(Hk)

1{Hk is admissible}

]
= (1 + o(1))

∑
H∈Hk

s2e(H) (generating function)

Hk: The set of all admissible Hk

Key remaining challenge: enumerate Hk using orbit structure
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Analysis

• Proof of detection thresholds

• Proof of partial recovery thresholds

• Proof of exact recovery thresholds

Jiaming Xu (Duke) Random Graph Matching 30



Proof of partial recovery thresholds: Positive results

• Gaussian or dense Erdős-Rényi: analyzing MLE (QAP)

π̂ML ∈ arg max
π∈Sn

∑
i<j

AijBπ(i)π(j)

• Sparse Erdős-Rényi: Analyze densest subgraph in intersection graph
Aπ ∧B
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Proof of negative results: Gaussian model

1 Characterization of mutual info by truncated 2nd moment method:

I(π∗;A,B) =

(
n

2

)
I(ρ)− KL(P‖Q) ≈

(
n

2

)
I(ρ)

where I(ρ) = 1
2 log 1

1−ρ2 is the mutual info between two ρ-correlated
standard Gaussians

2 An area theorem based on I-MMSE formula [Guo-Shamai-Verdú ’05]

I(π∗;A,B) =
1

2

∫ ρ2

0

mmseθ(A
π∗ |A,B)

(1− θ)2 dθ

3 Impossibility of estimating Aπ
∗

in squared error
=⇒ Impossibility of estimating π∗ in overlap
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Proof of negative results: Erdős-Rényi

1 Characterization of mutual info by truncated 2nd moment method:

I(π∗;A,B) =

(
n

2

)
I(p, s)− KL(P‖Q) ≈

(
n

2

)
I(p, s)

2 An “approximate” area theorem: Find an interpolating model Pθ
such that P0 = Q and P1 = P , and

I(π∗;A,B) ≈
(
n

2

)
I(p, s)− s

∫ 1

0
θ ·mmseθ(A

π∗ |A,B)dθ

3 Impossibility of estimating Aπ
∗

in squared error
=⇒ Impossibility of estimating π∗ in overlap
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Analysis

• Proof of detection thresholds

• Proof of partial recovery thresholds

• Proof of exact recovery thresholds
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Proof of exact recovery thresholds: Positive results

• Decompose the likelihood difference via edge orbits〈
Aπ −Aπ∗ , B

〉
=

∑
O∈O\O1

∑
(i,j)∈O

Aπ(i)π(j)Bij︸ ︷︷ ︸
XO

−
∑

O∈O\O1

∑
(i,j)∈O

Aπ∗(i)π∗(j)Bij︸ ︷︷ ︸
YO

• Apply large deviation analysis:
I For π far away from π∗: bound

∑
OXO and

∑
O YO separately

I For π close to π∗: bound
∑

O(XO − YO) directly

• The contribution of longer edge orbits can be effectively bounded by
that of the 2-edge orbits

M|O| , E [exp(tXO)] ≤M |O|/22 , ∀|O| ≥ 2
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Proof of exact recovery thresholds: Negative results

• Suffices to show the failure of MLE

• The bottleneck happens when π′ differs from π by a 2-node orbit
(i, j), for which the likelihood difference simplifies to〈

Aπ −Aπ∗ , B
〉

= −
∑

k∈[n]\{i,j}

(
Aπ∗(i)π∗(k) −Aπ∗(j)π∗(k)

)
(Bik −Bjk)

• Prove the existence of (i, j) for which
〈
Aπ −Aπ∗ , B

〉
≥ 0 whp
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Concluding remarks

Partial
recovery &
detection

Almost exact
recovery Exact recovery

p
n−o(1) nps2 = 2 logn

log(1/p)−1+p nps2

(1−√p)2 logn = 1

n−α nps2 = λ∗ nps2 = ω(1)

Gaussian nρ2

logn = 4
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densest subgraphs. arXiv:2203.14573.

• J. Ding & H. Du, Matching recovery threshold for correlated random graphs.
arXiv:2205.14650.

Jiaming Xu (Duke) Random Graph Matching 37



Concluding remarks

Partial
recovery &
detection

Almost exact
recovery Exact recovery

p
n−o(1) nps2 = 2 logn

log(1/p)−1+p nps2

(1−√p)2 logn = 1

n−α nps2 = λ∗ nps2 = ω(1)

Gaussian nρ2

logn = 4

Reference
• Y. Wu, J. Xu, & S. H. Yu, Testing correlation of unlabeled random graphs,

Annals of Applied Probability, arXiv:2008.10097.

• Y. Wu, J. Xu, & S. H. Yu, Settling the sharp reconstruction thresholds of random
graph matching, IEEE Transactions on Information Theory, arXiv:2102.00082.

• J. Ding & H. Du, Detection threshold for correlated Erdős-Rényi graphs via
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