
AI4OPT Tutorial Lectures: Recent Results in Planted Assignment Problems

Lecture 3: Spectral graph matching

Lecturer: Jiaming Xu Scribe: Jiaming Xu, April 20, 2023

Spectral algorithms are powerful methods for recovering the underlying structure in planted models
based on the principal eigenvectors of the observed data matrix A. Under planted models such as
planted clique or planted partition models, spectral algorithms and their variants have been shown
to achieve either the optimal recovery thresholds or the best possible performance within certain
relaxation hierarchies. The rationale behind spectral algorithms is that the principal eigenvectors of
E [A] contains information about underlying structures and the principal eigenvectors of A are close
to those of E [A], provided that the spectral gap (the gap between the largest few eigenvalues and
the rest of them) is much larger than the spectral norm of the perturbation ‖A− E [A] ‖.

Unfortunately, in random graph matching, the observed adjancency matrices of the two Erdős-Rényi
graphs have full rank and vanishing eigengaps. Therefore, for the naive spectral algorithms to
suceed, it requires a very high signal-to-noise ratio, that is, the fraction of edges differed in two
graphs δ ≤ n−C for a constant C. In this lecture, we will develop a new spectral method that
exactly recovers the underlying vertex correspondence with high probability when δ ≤ 1/polylog(n),
hereby achieving an exponential improvement in the noise tolerance [FMWX19a, FMWX19b].

3.1 Spectral graph matching paradigm

Write the eigenvalue decompsotions of the adjacency matrices A and B as

A =
n∑
i=1

λiuiu
>
i and B =

n∑
j=1

µjvjv
>
j , (3.1)

where the eigenvalues are ordered such that

λ1 ≥ · · · ≥ λn and µ1 ≥ · · · ≥ µn.

A general spectral graph matching paradigm works as follows:

1. Construct similarity matrix X based on (λi, ui) and (µj , vj), where Xk` measures the similarity
between vertex k in graph A and vertex ` in graph B;

2. Project X to permutation by linear assignment, that is,

Π̂ ∈ arg max 〈X,Π〉 . (3.2)

Many previous spectral methods fall into the above paradigm with different constructions of the
similarity matrix. These methods include:

• Low-rank methods that use a small number of eigenvectors of A and B. The simplest such
approach uses only the leading eigenvectors, taking as the similarity matrix

X̂ = u1v
>
1 . (3.3)

Then π̂ which solves (3.2) sorts the entries of v1 in the order of u1.
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Figure 3.1: Erdős-Rényi graphs: 500 vertices, edge probability 1
2 . The plot of 〈u100, vj〉2, averaged

across 1000 simulations.

• Full-rank methods that use all eigenvectors of A and B. A notable example is the popular
method of Umeyama [Ume88], which sets

X̂ =
n∑
i=1

siuiv
>
i (3.4)

where si ∈ {−1, 1}. The motivation is that (3.4) is the solution to the orthogonal relaxation of
the QAP (3.6), where the feasible set is relaxed to the set of the orthogonal matrices.

All these methods turn out to perform very well with no noise, but are extremely fragile with
noise. The underlying reason is that A and B have full rank and vanishing eigengaps. This leads to
decorrelation of the eigenvectors ui and vi even when δ = n−C , as illustrated in Fig. 3.1.
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3.2 A new spectral method: GRAMPA

As can be seen from Fig. 3.1, when the fraction of edges differed in the two graphs δ increases, the
correlation between ui and vi decreases, and vj becomes correlated with ui for a wider range of j
neighboring i. It suggests that to effectively leverage the correlation among the eigenvectors, we
need to align all pairs of eigenvectors. This inspires our new spectral method - GRAph Matching by
Pairwise eigen-Alignments, dubbed GRAMPA.

X =
n∑

i,j=1

η

(λi − µj)2 + η2︸ ︷︷ ︸
spectral weights

× u>i Jvj · uiv>j︸ ︷︷ ︸
“Alignment” between ui and vj

, (3.5)

where η = bandwidth parameter, J = all-one matrix.

Note that the spectral weight penalizes pairs whose eigenvalues are far apart and the Cauchy spectral
weight is inspired by the eigenvector correlation decay

n · E
[
〈ui, vj〉2

]
≈ δ

(λi − µj)2 + Cδ2
.

Also, a nice feature of GRAMPA is that it is invariant to the choices of signs for ui and vj .

It turns out that GRAMPA is also rooted in optimization, as the similarity matrix X corresponds
to the solution to a convex relaxation of the QAP, regularized by an added ridge penalty. To see
this, note that graph matching can be cast as a quadratic assignment problem (QAP):

arg max
Π∈Sn

〈A,ΠBΠ>〉 = arg min
Π∈Sn

‖A−ΠBΠ>‖2F = arg min
Π∈Sn

‖AΠ−ΠB‖2F , (3.6)

where the last equality holds because Π is an orthogonal matrix. Note that the objective function
‖AΠ−ΠB‖2F is quadratic in Π. The only non-convex part is the permutation set constraint Π ∈ Sn.
Since the convex hull of the permutation matrices is the set of the doubly stochastic matrices, this
gives rise to a natural quadratic programming relaxation:

arg min
X≥0: X1=1, X>1=1

‖AX −XB‖2F (QP-DS) (3.7)

It turns out that the GRAMPA similarity matrix X is (a multiple of)

arg min
X: 1>X1=n

‖AX −XB‖2F + η2‖X‖2F , (3.8)

which further relaxes the DS constraint to be the total-sum constraint and adds a ridge regularizer.
To see this, define the Lagrangian function

L(X, γ) = ‖AX −XB‖2F + η2‖X‖2F − 2γ (〈X,J〉 − n) .

Let vec(A) denote the vector formed by stacking all the columns of A. Then we have the following
identity:

vec(AXB) = (B> ⊗A)vec(X).

It follows that

L(X, γ) = vec(X)>
(
I⊗A2 +B2 ⊗ I− 2B ⊗A

)
vec(X) + η2‖vec(X)‖22 − 2γ (〈vec(X), vec(J)〉 − n)
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and hence

∂L(X, γ)

∂X
= 2

(
I⊗A2 +B2 ⊗ I− 2B ⊗A+ η2I⊗ I

)
vec(X)− 2γvec(J)

Setting the above partial derivative to be 0 yields that

vec(X) = γ
(
I⊗A2 +B2 ⊗ I− 2B ⊗A+ η2I⊗ I

)−1
vec(J).

Finally, let A = UΛU> and B = VMM> denote the eigenvalue decomposition. We get that

I⊗A2 +B2⊗ I− 2B⊗A+ η2I⊗ I = (V ⊗ U)
(
I⊗ Λ2 +M2 ⊗ I− 2M ⊗ Λ + η2I⊗ I

) (
V > ⊗ U>

)
.

Therefore,

vec(X) = γ (V ⊗ U)
(
I⊗ Λ2 +M2 ⊗ I− 2M ⊗ Λ + η2I⊗ I

)−1
(
V > ⊗ U>

)
vec(J)

=
n∑

i,j=1

γ

(λi − µj)2 + η2
(vj ⊗ ui)

(
v>j ⊗ u>i

)
vec(J)︸ ︷︷ ︸

vec(uiu>i Jvjv>j )

.

3.3 Analysis of GRAMPA

In this section, we will prove the following performance guarantee of GRAMPA. Let δ = 1 − s
denote the fraction of differed edges in two graphs and q denote the edge probability in one of the
two graphs.

Theorem 3.1. GRAMPA achieves exact recovery with high probability if

nq & (log n)C and δ . (log n)−C

for some absolute constant C.

Note that the performance of GRAMPA exponentially improves the performance of existing spectral
matching algorithms, which require σ = 1

poly(n) as opposed to σ = O( 1
polylogn). Also, we will show

that the performance of GRAMPA holds universially across a wide range of correlated Wigner
model with independent entries, e.g., Gaussian model.

3.3.1 Diagonal dominance structure

Equipped with this optimization point of view, we now explain the typical structure of solutions to
the above quadratic programs including the spectral similarity matrix (3.5). It is well known that
even the solution to the most stringent relaxation (3.7) is not the latent permutation matrix, which
can be shown by proving that the KKT conditions cannot be fulfilled with high probability. In
fact, a heuristic calculation explains why the solution to (3.7) is far from any permutation matrix:
Let us consider the “population version” of (3.7), where the objective function is replaced by its
expectation over the random instances A and B. Consider π∗ = id and the Gaussian Wigner model
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B = A+ σZ, where A and Z are independent GOE matrices with N(0, 1
n) off-diagonal entries and

N(0, 2
n) diagonal entries. Then the expectation of the objective function is

E‖AX −XB‖2F = E‖AX‖2F + E‖XB‖2F − 2E〈AX,XA〉

= (2 + σ2)
n+ 1

n
‖X‖2F −

2

n
Tr(X)2 − 2

n
〈X,X>〉.

Hence the population version of the quadratic program (3.7) is

min
X≥0:X1=1,X>1=1

(2 + σ2)(n+ 1)‖X‖2F − 2Tr(X)2 − 2〈X,X>〉, (3.9)

whose solution1 is

X , εI + (1− ε) 1

n
J, ε =

2

2 + (n+ 1)σ2
≈ 2

nσ2
. (3.10)

This is a convex combination of the true permutation matrix and the center of the Birkhoff polytope
1
nJ. Therefore, the population solution X is in fact a very “flat” matrix, with each entry on the
order of 1

n , and is close to the center of the Birkhoff polytope and far from any of its vertices.

This calculation nevertheless provides us with important structural information about the solution
to such a QP relaxation: X is diagonally dominant for small σ, with diagonals about 2/σ2 times
the off-diagonals. Although the actual solution of the relaxed program (3.7) or (3.8) is not equal to
the population solution X in expectation, it is reasonable to expect that it inherits the diagonal
dominance property in the sense that X̂i,π∗(i) > X̂ij for all j 6= π∗(i), which enables rounding
procedures such as (3.2) to succeed.

With this intuition in mind, let us revisit the regularized quadratic program (3.8) whose solution
is the spectral similarity matrix (3.5). By a similar calculation, the solution to the population

version of (3.8) is given by αI + βJ, with α = 2n2

(n(η2+σ2)+σ2)(n(η2+σ2+2)+σ2)
≈ 2

(η2+σ2)(η2+σ2+2)
and

β = n
n(η2+σ2+2)+σ2 ≈ 1

η2+σ2+2
, which is diagonally dominant for small σ and η. In turn, the basis

of our theoretical guarantee is to establish the diagonal dominance of the actual solution X̂; see
Fig. 3.2 for an empirical illustration.

3.3.2 Gaussian Heuristic argument

To build up intuition, let us first consider the noiseless Gaussian case where A = B. In this case, we
have

X =
n∑
i=1

1

η
(u>i Jui)uiu

>
i +

∑
i 6=j

η

η2 + (λi − λj)2
(u>i Juj)uiu

>
j . (3.11)

We explain why the first term is diagonally dominant, while the second term is a perturbation
of smaller order. Central to our proof is the fact that A ∼ GOE(n) is rotationally invariant in
law, so that U = (u1, . . . , un) is uniformly distributed on the orthogonal group and independent of
λ1, . . . , λn. The coordinates of U are approximately independent with distribution N(0, 1

n).

1In fact, (3.10) is the solution to (3.9) even if the constraint is relaxed to 1>X1 = n.
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Figure 3.2: Diagonal dominance of the GRAMPA similarity matrix X defined by (3.5) or (3.8) for
the Gaussian Wigner model B = A+ σZ with n = 200, σ = 0.05 and η = 0.01.

For the first term in (3.11), with high probability u>i Jui = 〈ui,1〉2 ≈ 1 for every i. Applying the

heuristic (ui)k
i.i.d.∼ N(0, 1

n), the first term satisfies

n∑
i=1

1

η
(u>i Jui)(ui)k(ui)` ≈

{
1
η if k = `

1
η
√
n

if k 6= `
. (3.12)

For the second term in (3.11), Applying the heuristic that g, h are approximately iid N(0, 1
nI), we

have a Hanson-Wright type bound

∑
i 6=j

η

η2 + (λi − λj)2
(u>i Juj)(ui)k(uj)` ≈

√
1

n2

∑
i 6=j

( η

η2 + (λi − λj)2

)2

≈

√∫∫ ( η

η2 + (x− y)2

)2
ρ(x)ρ(y)dxdy ≈ 1

√
η
, (3.13)

where the second approximation uses the fact that as n→∞, the empirical spectral distribution
n−1

∑n
i=1 δλi of A converges to the Wigner semicircle law with density ρ, and the last step is an

elementary computation that holds for any bounded density ρ with bounded support. Combining
(3.12)–(3.13) shows that the noiseless solution X in (3.11) is indeed diagonally dominant, with
diagonals approximately η−1 and off-diagonals at most of the order η−1/2, omitting logarithmic
factors.

The above heuristic argument can be made rigorous when A,B are Gaussian since the eigenvalues
and eigenvectors are independent, but hard to extend to Erdős-Rényi graphs. In the next subsection,
we present a rigorous proof using resolvents and local alws.
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3.3.3 Proof of universality via resolvents

We will establish the diagonal dominance under a general correlated Wigner model. Consider the
standardized weighted adjacency matrices A,B where (Aij , Bij) are independent sub-gaussian pairs
satisfying

E[Aij ] = E[Bij ] = 0, E[A2
ij ] = E[B2

ij ] =
1

n
, E[AijBij ] =

1− δ
n

Here we omit some additional growth contions on the higher moments for simplicity.

Our key proof techniques are resolvent and local laws. For a real symmetric matrix A with spectral
decomposition (3.1), its resolvent is a complex-valued matrix defined as

RA(z) , (A− zI)−1 =
n∑
i=1

1

λi − z
uiu
>
i , z ∈ C\R

Denote Wigner’s semicircle density and its Stieltjes transform by

ρ(x) =
1

2π

√
4− x2 · 1 {|x| ≤ 2} and m(z) =

∫
1

x− z
ρ(x)dx =

−z +
√
z2 − 4

2

Classical result in radom matri theory states that the empirical eigenvalue distribution 1
n

∑n
i=1 δλi

converges to ρ. Hence, we expect that

1

n
TrRA(z) =

1

n

n∑
i=1

1

λi − z
→ m(z)

There exist stronger results concern the entire matrix RA(z) when Im z is not too small. This is
called local laws [EKYY13a, EKYY13b]:

• RA(z) ≈ m(z)I entrywise, that is, whp

(RA(z))ij ≈ m(z) · 1 {i = j} (3.14)

• Similarly, row sum and total sum satisfy: whp∑
j

(RA(z))ij . polylog(n)
∑
i,j

(RA(z))ij ≈ n ·m(z)

With these local laws, we are now ready to analyze the GRAMPA similarity matrix X defined by
(3.5).

Step 1: Resolvent representation

The first step is to represent X using resolvents.

Lemma 3.1. Consider symmetric matrices A and B with spectral decompositions (3.1), and suppose
that ‖A‖ ≤ 2.5. Then the matrix X defined in (3.5) admits the following representation

X =
1

2π
Re

∮
Γ
RA(z)JRB(z + iη)dz, (3.15)

where
Γ = {z : |Re z| = 3 and | Im z| ≤ η/2 or | Im z| = η/2 and |Re z| ≤ 3} (3.16)

is the rectangular contour with vertices ±3± iη/2 (See Fig. 3.3 for an illustration).
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Figure 3.3: Γ encloses λ1, . . . , λn but not µ1 − iη, . . . , µn − iη.

Proof. By definition,

ImRB(λi + iη) = Im

∑
j

1

µj − λi − iη
vjv
>
j


=
∑
j

vjv
>
j Im

[
1

µj − λi − iη

]
=
∑
j

vjv
>
j

η

(µj − λi)2 + η2
.

Thus,

X = η
∑
i,j

uiu
>
i J

vjv
>
j

(λi − µj)2 + η2

= Im
∑
i

uiu
>
i JRB(λi + iη). (3.17)

Consider the function f : C→ Cn×n defined by f(z) = JRB(z+ iη). Then each entry fk` is analytic
in the region {z : Im z > −η}. Since Γ encloses each eigenvalue λi of A, the Cauchy integral formula
yields entrywise equality

− 1

2πi

∮
Γ

f(z)

λi − z
dz = f(λi). (3.18)

Substituting this into (3.17), we obtain

X = Im
∑
i

viv
>
i

(
− 1

2πi

∮
Γ

f(z)

λi − z
dz

)
=

1

2π
Re

∮
Γ
RA(z)f(z)dz, (3.19)

which completes the proof in view of the definition of f .

Step 2: Leave-one-out relation

With the resolvent representation of X in Lemma 3.1, we can now apply local laws to bound X
entrywise. In particular,

Xk` =
1

2π
Re

∮
Γ

[
e>k RA(z)1

] [
1>RB(z + iη)e`

]
dz

Note that one may attempt to directly apply (3.3.3) to bound the row sums e>k RA(z)1 and
e>` RB(z + iη)1. However, this estimate is too crude to capture the differences between the diagonal
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and off-diagonal entries. In fact, the row sum e>k RA(z)1 does not concentrate on its mean, and the
deviation e>k RA(z)1−m0(z) and e>` RB(z + iη)1−m0(z) is uncorrelated for k 6= ` and positively
correlated for k = `. For this reason, the diagonal entries of X dominate the off-diagonals. Thus
it is crucial to gain a better understanding of the deviation terms. We do so by applying Schur
complement decomposition and the leave-one-out analysis.

To proceed, let us recall the Schur complement identity.

Lemma 3.2 (Schur complement identity). Provided D is square and invertible,

M =

[
A B
C D

]
=⇒ M−1 =

[
S −SBD−1

−D−1CS D−1 +D−1CSBD−1

]
where S = (A−BD−1C)−1.

The utility of this result (both theoretically and algorithmically) is to reduce matrix inverse to
inverting smaller matrices. Now, let us apply Schur complement identity to study X11. Write

A =

(
a11 a>1
a1 A(1)

)
RA(z) =

(
RA,11 RA,1∗
RA,∗1 RA,∗∗

)
By the Schur-complement formula

RA,1∗(z) = −RA,11(z) · a>1 (A(1) − zI)−1

≈ −m(z) · a>1 RA(1)(z)
,

where we apply the approximation (3.14). It follows that

e1RA,1∗(z)1 ≈ m(z)−m(z) · a>1 RA(1)(z)1.

Writing a similar expression for B, we get

X11 ≈
1

2π
Re

∮
Γ

(
m(z)−m(z) · a>1 RA(1)(z)1

)(
m(z + iη)−m(z + iη) · 1>RB(1)(z + iη)b1

)
dz

≈ 1

2π
Re a>1

∮
Γ
m(z)m(z + iη)RA(1)(z)11>RB(1)(z + iη)dz︸ ︷︷ ︸

M

b1,

where in the last approximation we only keep the bilinear term as it captures the desired correlation.
In particular, note that a1 and b1 are correlated, and they are independent of A(1) and B(1) and
hence M. Thus, we can condition on M and apply Hanson-wright type bound.

Similarly, for off-diagonals, we get (by leaving two out and only keeping the bilinear term) that

X12 ≈
1

2π
Re a>1

∮
Γ
m(z)m(z + iη)RA(12)(z)11>RB(12)(z + iη)dz︸ ︷︷ ︸

N

b2.

where A(12) and B(12) are the same as A and B by deleting the first two rows and columns. Note
that here a1 and b2 are uncorrelated, and again they are independent of N . Thus, again we can
condition on N and apply Hanson-wright type bound.
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Step 3: Separating signal from noise

As aforementioned, we will apply concentration of bilinear forms. Recall that a1, b1 are correlated
and a1, b2 are independent, s.t.

E[a1b
>
1 ] =

1− δ
n

I, E[a1b
>
2 ] = 0.

So we expect, for deterministic matrix M ,

a>1 Mb1 ≈
1− δ
n

Tr(M) a>1 Mb2 ≈ N
(

0,
1

n2
‖M‖2F

)
More precisely, applying Hanson-wright type bound, we get that whp∣∣∣∣a>1 Mb1 −

1− δ
n

Tr(M)

∣∣∣∣ ≤ polylog(n) ‖M‖F
n

,
∣∣∣a>1 Mb2

∣∣∣ ≤ polylog(n) ‖M‖F
n

.

Thus, applying the above concentration bound for the bilinear forms, we get that

X11 ≈
1

2π
Re

1− δ
n

Tr(M), X12 .
polylog(n)

n
‖N‖F . (3.20)

Step 4: Proof of diagonal dominance

It remains to bound Tr(M) and ‖N‖F . To bound Tr(M), applying the facts:

• RB(z + iη)RA(z) = 1
iη (RB(z + iη)−RA(z)−RB(z + iη)(A−B)RA(z))

• whp, 1>RA(z)1 ≈ nm(z), ‖A−B‖ .
√
δ and ‖RA(z)1‖ .

√
n
η ,

we get

1

n
ReTr(M)

=
1

n
Re

∮
Γ
dz m(z)m(z + iη)Tr

[
RA(z)JRB(z + iη)

]
=

1

n
Re

∮
Γ
dz m(z)m(z + iη)1>RB(z + iη)RA(z)1

=
1

nη
Im

∮
Γ
dz m(z)m(z + iη)1> (RB(z + iη)−RA(z)−RB(z + iη)(A−B)RA(z))1

≤1

η
Im

∮
Γ
dz m(z)m(z + iη)(m(z + iη)−m(z))︸ ︷︷ ︸

2π+oη(1)

+O

(√
δ

η2

)
.

To bound ‖N‖F , we first deform the contour as follows:
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z ∈ Γ

w ∈ Γ′
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−η/4

Re

Im

Then

N =

∮
Γ
m(z)m(z + iη)RA(z)JRB(z + iη)dz

=

∮
Γ′
m(w)m(w + iη)RA(w)JRB(w + iη)dw

Applying the facts

• m(z) = m(z), RA(z)∗ = RA(z)

• RA(z)RA(w) = RA(z)−RA(w)
z−w

• |m(z)| . 1 and |1>RA(z)1| . n

we get

‖M‖2F = Tr(MM∗)

=

∮
Γ
dz

∮
Γ′
dw m(z)m(z + iη)m(w)m(w − iη)Tr

[
RA(z)11>RB(z + iη)RB(w − iη)11>RA(w)

]
=−

∮
Γ
dz

∮
Γ′
dw m(z)m(z + iη)m(w)m(w − iη)1>RA(w)RA(z)11>RB(z + iη)RB(w − iη)1

=−
∮

Γ
dz

∮
Γ′
dw m(z)m(z + iη)m(w)m(w − iη)

1>(RA(z)−RA(w))1

z − w
1>(RB(z + iη)−RB(w − iη))1

z + iη − (w − iη)

.n2

∮
Γ
dz

∮
Γ′
dw

1

|z − w|
1

|z − w + 2iη|︸ ︷︷ ︸
�1/η

,

where the last integral is bounded by considering case (i): either z or w is on the vertical strips of
Γ ∪ Γ′ and case (ii): both z and w are on the horizontal strips of Γ ∪ Γ′.

Plugging the above bounds back to (3.20), we arrive at

X11 ≈
1− δ
η

+

√
δ

η2
, X12 .

polylog(n)
√
η

.

Applying this together with a union bound for every Xk` shows that X is diagonally dominant when

√
δ . η . 1/polylog(n)
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3.4 Extensions and open problems

For the dense graphs q = Θ(1), we can improve the noise tolerance to δ . (log n)−4+ε. For Gaussian
weighted graphs, we can improve the noise teolerance to δ . (log n)−2 by direct analysis following
our heuristic argument above. We can also obtain a similar result for a tighter QP relaxation

arg max
X: X1=1

‖AX −XB‖2F + η2‖X‖2F

using the technique of resolvents and local laws. A fundamental open problem is to analyze the
tigher relaxations

arg max
X: X1=1,X>1=1

‖AX −XB‖2F + η2‖X‖2F

and
arg max

X: X≥0,X1=1,X>1=1
‖AX −XB‖2F

We have also extended the results to matching bipartite graphs. Another interesting future direction
is to study other andom graphs ensembles, e.g., random geometric graphs.
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