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Initiated by [HS17], one versatile approach to understanding the computational limit of statistical
problems is via low-degree polynomial approximation of the likelihood ratio. This approach not only
gives predictions of the computational limit but also leads to efficient algorithms. As a case study,
let us consider the random graph matching problem. We will show that the low-degree polynomial
method gives efficient algorithms for both detection and recovery when the correlation is above an
explicit constant known as Otter’s constant. In the negative direction, we will show that all local
algorithms fail below Otter’s constant.

4.1 Low-degree polynomial approximation of likelihood ratio

Recall the hypothesis testing problem for graph matching{
H0 : A and B are two independent G(n, q)

H1 : A and B are two ρ-correlated G(n, q)
.

Specifically, under H1, there exists a random uniform permutation π ∈ Sn such that conditional on
π, {Aij , Bπ(i)π(j)} are i.i.d. pairs of Bern(q) with correlation ρ, that is

Āij ,
Aij − q√
q(1− q)

, B̄ij ,
Bij − q√
q(1− q)

, E
[
ĀijB̄ij

]
= ρ.

Let Q and P denote the joint distribution of (A,B) under H0 and H1, respectively. By the
Neyman-Pearson lemma, the optimal test is given by the likelihood ratio test, that is,

L(A,B) ,
P (A,B)

Q(A,B)
= Eπ

[
P (A,B | π)

Q(A,B)

]
π

.

Note that the above expectation invovles n! permutations and hence is computationally intractable to
evaluate. To obtain a computationally efficient test, an approach initiatied by and further developed
by is known as the low-degree polynomial approximation, which projects the likelihood ratio function
L onto the space spanned by the low-degree polynomials. To this end, consider a space consisting

of all functions f : {0, 1}2×(n2) → R endowed with inner product 〈f, g〉 , EQ[f(A,B)g(A,B)]. Next,

we introduce an orthonormal polynomial basis, indexed by subsets of
(

[n]
2

)
or equivalently the

edge-induced subgraph of the complete graph Kn, that is,

φS(A,B) =
∏

(i,j)∈S1

Āij
∏

(i,j)∈S2

B̄ij ,

where S , (S1, S2) and S1, S2 ⊂
(

[n]
2

)
. Note that {φS}S⊂([n]2 )×([n]2 ) is a Fourier basis for functions on

the hypercube {0, 1}2(
n
2). In particular, it is easy to check that
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• EQ[φS ] = 0 for all S 6= ∅

• 〈φS , φT 〉 = 1 {S = T}

• φS is a degree-|S| polynomial of the entries of A and B, where |S| = |S1|+ |S2|.

Now, we are ready to introduce the “optimal” degree-2K polynomial, that is,

f∗ ∈ arg max
f :deg(f)≤2K

EP [f ]√
EQ[f2]

.

Note that the quantity to be maximized can be viewed as a signal-to-noise ratio SNR for the test
statistic f. By the change of measure EP [f ] = 〈L, f〉 and moreover, EQ[f2] = 〈f, f〉 = ‖f‖22. Thus,
by Cauchy-Schwartz inequality,

〈L, f〉 =
〈
L≤2K , f

〉
≤
∥∥L≤2K

∥∥
2
‖f‖2,

where L≤2K is the projection of L on the subspace spanned by the basis {φS : |S| ≤ 2K} and the
inequality is met with equality when f ∝ L≤2K . Hence,

f∗ = L≤2K =
∑

S:|S|≤2K

〈L, φS〉φS

It is easy to check that

EP [f ] = EQ[f2] =
∑

S:|S|≤2K

〈L, φS〉2

and hence
EP [f∗]√
EQ[(f∗)2]

=

√ ∑
S:|S|≤2K

〈L, φS〉2.

Before proceeding, we remark that the above low-degree polynomial approximation approach works
for general hypothesis testing problems, as long as the polynomial basis under the null distribution
can be properly defined.

Next, we focus on the graph matching problem and evaluate the coefficient 〈L, φS〉. In particular,

〈L, φS〉 = EP [φS(A,B)] = EπEP |π

 ∏
(i,j)∈S1

Āij
∏

(k,`)∈S2

B̄k`


Due to the centering, crucially

EP |π

 ∏
(i,j)∈S1

Āij
∏

(k,`)∈S2

B̄k`

 =

{
0 if π(S1) 6= S2

ρ|S1| o.w.
.

Therefore,

〈L, φS〉 =

{
0 if S1 6∼= S2

ρ|H|P [π(S1) = S2] if S1
∼= S2

∼= H,
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where H denotes an unlabeled graph or more formally an isomorphic class. Note that when
S1
∼= S2

∼= H, P [π(S1) = S2] = 1
subn(H) , where subn(H) denotes the number of copies of H in Kn.

Define

aH = ρ|H| × 1

subn(H)
.

Then we have

f∗ =
∑

H:|H|≤K

aH
∑
S1
∼=H

∑
S2
∼=H

φS =
∑

H:|H|≤K

aH
∑
S1
∼=H

∏
(i,j)∈S1

Āij︸ ︷︷ ︸
WH(Ā)

∑
S2
∼=H

∏
(i,j)∈S2

B̄ij︸ ︷︷ ︸
WH((̄B))

Note that WH(A) is simply the subgaph count of H in A and hence WH(Ā) is known as the
signed subgraph count due to the centering. Let W ( ¯(A) =

(√
aHWH(Ā)

)
H

denote a graph feature
vector where each coordinate corresponds to a weighted signed subgraph count. Then, the optimal
low-degree polynomial f∗ has an appealing interpretation in terms of graph kernel, that is

f∗ =
〈
W (Ā),W (B̄)

〉
.

Intuitively, f∗ captures the inherent edge correlation between A and B by counting the co-occurrences
of signed graphs for a family of non-isormophis graphs.

It is postulated in [Hop18, KWB19] that, if the signal-to-noise ratio EP [f∗]√
EQ[(f∗)2]

stays bounded for

K = polylog(n) as n→∞, then no polynomial-time algorithm can distinguish between P and Q
with vanishing error. This is known as low-degree hardness conjecture.

Our above result shows that

EP [f∗]√
EQ[(f∗)2]

=
∑

H:|H|≤K

∑
S1
∼=H

∏
(i,j)∈S1

a2
H =

∑
H:|H|≤K

ρ2H ,

where the last inequlaity holds because |{S1 : S1
∼= H}| = subn(H). Since an unlabeled graph

[H] ∈ H∗ with k edges has at most 2k vertices, the number of such graphs is at most
((2k)2

k

)
≤ (4ek)k

and hence ∑
[H]∈H∗

ρ2|E(H)| ≤
K∑
k=1

(4ek)kρ2k = O(1)

for K = polylog(n), provided that ρ2 ≤ 1
polylog(n) . Therefore, if the squared correlation ρ2 is smaller

than 1
polylog(n) , then the signal-to-noise ratio for any degree-polylog(n) polynomial test is bounded,

in which case the testing problem is conjectured to be computationally hard. In view of the close
connection between hypothesis testing and estimation, we further conjecture the graph matching
problem (namely, recovering the latent permutation π under the correlated Erdős-Rényi model
G(n, q, ρ)) is computationally hard when ρ2 ≤ 1

polylog(n) . Note that these conjectures are consistent
with the state-of-the-art results for which no polynomial-time test or matching algorithm is known
when ρ2 ≤ 1

polylog(n) .

4.2 Efficient testing via counting trees

In the positive direction, we can restrict subgraph count to tree count and obtain an efficient testing
procedure. To this end, let T denote the set of all unlabeled trees with K edges. For example, for

3



K = 4, T consists of three trees shown in pictograms below (see [? , App. I] for bigger examples)

T =

{
, ,

}

A celebrated result of Otter [Ott48] is that the number of unlabeled trees grows exponentially with

|T | � 1

K3/2
(1/α)K , (4.1)

where α ≈ 0.33833 is Otter’s constant. Define

fT =
∑
H∈T

aHWH(Ā)WH(B̄).

Theorem 4.1 ([MWXY21]). Suppose q ≤ 1/2,

nq ≥ n−o(1), ρ2 > α, ω(1) ≤ K ≤ log n

16 log log n ∨ 2 log
(

1
nq

) . (4.2)

Then the testing error satisfies

Q(fT (A,B) ≥ τ) + P (fT (A,B) ≤ τ) = o(1), (4.3)

where the threshold is chosen as τ = CEP [fT (A,B)] for any fixed constant 0 < C < 1.

Note that assuming q ≤ 1/2 is without loss of generality, as we can equivalently test the correlation
between the complement graphs of the observed graphs and replace q by 1 − q. The condition
nq ≥ n−o(1) in fact applies to the very sparse regime of vanishing average degrees, as long as they
are slower than any polynomial in n. This condition is necessary for the existence of trees with
K = ω(1) edges.

Proof sketch of Theorem 4.1. We have shown that EQ[fT ] = 0 and

EP [fT ] = EQ[f2
T ] =

∑
H∈T

ρ2|H| = ρ2k|T | → ∞,

where the last assertation holds by (4.1) and the assumptions that ρ2 > α and K →∞. It remains
to further show that EP [fT ]/

√
VarP [fT ]→∞ and the proof is complete by invoking Chebyshev’s

inequality. To bound the variance, it suffices to control

EP [f2
T ] =

∑
H,I∈T

aHaIEP [WH(Ā)WH(B̄)WI(Ā)WI(B̄)]

=
∑
H,I∈T

aHaI
∑

S1,S2
∼=H

∑
T1,T2∼=I

EP [ĀS1B̄S2ĀT1B̄T2 ]︸ ︷︷ ︸
(I)

.

We can bound term (I) in terms of the overlaping pattern of the 4-tuple (S1, S2, T1, T2), and then
enumerate the 4-tuples. We omit the details here and refer the interested reader to [MWXY21].
Note that this is the place where we crucially use the tree property and the upper bound to K.
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Having established the statistical guarantee of fT , next we design an efficient algorithm to ap-
proximately compute fT . In particular, the key subroutine is to compute a weighted tree count
WH(M) =

∑
S∼=H

∏
(i,j)∈SMij for H ∈ T . Note that computing WH(M) via a naive exhaustive

search takes nΩ(K) time, which is superpolynomial when K →∞. To resolve this computational
issue, we design an n2eO(K)-time algorithm to compute an approximation of WH(M) using the
strategy of color coding [AYZ95]. The main steps are as follows.

1. Assign random coloring µ to each vertex from [K + 1] uniformly at random.

2. Define the colorful subgraph count

YH(M,µ) =
∑
S∼=H

1 {S has K + 1 colors}
∏

(i,j)∈S

Mij

Then Eµ[YH(M,µ] = rWH(M), where r = (K+1)!
(K+1)K+1 .

3. Generate O(1/r) independent random colorings µt and compute

ŴH(M) =

1/r∑
t=1

YH(M,µt)

4. Compute YH(M,µ) via dynamic programming in n2eO(K) time.

Step 2 shows that YH(M,µ)/r is an unbiased estimator of WH(M). To further reduce the variance,
in Step 3 we average over many independent colorings and obtain a more accurate unbiased estimator
ŴH(M). Now crucially each colorful subgraph count YH(M,µ) can be efficiently computed via
dynamic programming using the recursive tree property. The high-level idea is as follows. Pick any
edge (u, v) in the tree H, which divides the tree into two subtrees, one rooted at u, say Hu, and
the other rooted at v, say Hv . Suppose the colorful subtree counts have already been recursively
computed. Then we can multify the colorful subtree count for Hu, the colorful subtree count for Hv,
and Muv, subject to the constraints that the color sets for Hu and Hv are disjoint. This should give
the colorful tree count for H. Note that here the colorful property ensures that the vertex sets of
Hu and Hv must be disjoint, so that we obtain a valid tree H when patching Hu and Hv together.

4.3 Efficient recovery via counting chandeliers

In this subsection, we turn to recovery. Analogous to testing, an immediate question is: can we
define a feature vector based on subgraph count for each node? The answer is yes using the rooted
subgraph count. As such, for node i in graph A, define

Wi,H(Ā) =
∑

S(i)∼=H

∏
e∈Si

Āe,

where H is a rooted subgraph and S(i) denote a subgraph rooted at i. The isomorphism between
two rooted graphs ensures that the isomorphism mapping must map between the two roots. Now,
given a family H of non-isomrophic graphs, define the feature (signature) vector,

si ,
(√
aHWi,H(Ā)

)
H∈H .
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Similarly define tj for node j in graph B. Then we can define a similary measure between node i in
A and node j in B as

Φij = 〈si, tj〉 =
∑
H∈H

aHWi,H(Ā)Wj,H(B̄).

Finally, for each i ∈ [n], if there exists a unique j ∈ [n] such that ΦHij ≥ τ , let π̂(i) = j and include i
in set I.

It remains to choose this collection of subgraphs H. Ideally, we would like Φij to be maximized at
j = π(i), at least on average.

Mean separation. Let’s first compute the mean. In the following calculation, let us assume π is
the identity permutation for simplicity. Then

E [Φij ] =
∑
H∈H

aHE
[
Wi,H(Ā)Wj,H(B̄)

]
=
∑
H∈H

aH
∑

S(i)∼=H

∑
T (j)∼=H

E
[
ĀS(i)B̄T (j)

]
.

Again, note that
E
[
ĀS(i)B̄T (j)

]
= ρ|H|1 {S(i) = T (j)}.

Therefore,

E [Φij ] =
∑
H∈H

aHρ
|H|

∑
S(i)∼=H

∑
T (j)∼=H

1 {S(i) = T (j)}

To ensure that E [Φij ] has zero mean for fake pairs j 6= i, we now restrict the graph H to be uniquely
rooted, i.e., H is non-ismorphic to itsef if we change its root to any other vertex. For example, is
not uniquely rooted, while is uniquely rooted.

Now, thanks to the uniquely rooted property of H, if S(i) ∼= H, T (j) ∼= H, then S(i) = T (j) implies
i = j. Hence,

E [Φij ] =
∑
H∈H

aHρ
|H|subn(H)1 {i = j} =

∑
H∈H

ρ2|H|
1 {i = j},

where the last equality holds by defining aH = ρ|H|/subn(H) and subn(H) is the number of copies
of the rooted graph H in the complete graph Kn.

Variance bound. It remains to bound Var(Φij). Note that

Var(Φij) =
∑
H,I∈H

aHaICov
(
Wi,H(Ā)Wj,H(B̄),Wi,I(Ā)Wj,I(B̄)

)
.

To get a sense, let us first ignore the cross correlation for distinct H and I. Then for fake pairs
j 6= i, it turns out that we can approximate the variance as:

Var(Φij) ≈
∑
H∈H

a2
H Var

(
Wi,H(Ā)Wj,H(B̄)

)︸ ︷︷ ︸
≈sub2

n(H)

≈
∑
H∈H

ρ2|H|.
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Figure 4.1: A chandelier with L = 3, M = 2, N = 4, rooted at the solid vertex. The wires are shown
in red, and the bulbs in blue. In this case R = 1 since each bulb has no non-trivial automorphism
(as rooted graphs).

Then we deduce that
E [Φii]

2

Var(Φij)
=
∑
H∈H

ρ2|H|

If we still restrict H to be the set T of unlabeled, uniquely rooted trees with K edges, then the
above quantity diverges when ρ2 > α and K →∞. In order to apply a union bound over all the
n(n− 1) fake pairs, we further need K � log n, so that

E [Φii]
2

Var(Φij)
=
∑
H∈H

ρ2|H| = ω(n2).

Note that in contrast to testing which only needs K = O(log n/ log log n), here we need much larger
trees with Θ(log n) edges. This will incur significant analysis challenges when we bound Var(Φij).

Unfortunately, the cross-correlation plays a significant role and cannot be ignored. In fact, we are
unable to bound Var(Φij) when we restrict H to the set of all unlabeled, uniquely rooted trees. To
resolve this challenge, we propose to count a special family T ∗ of unlabeled rooted trees, which we
call chandeliers.

Definition 4.1 (Chandelier). An (L,M,N,R)-chandelier is a rooted tree with L branches, each of
which consists of a path with M edges (which we call an M -wire) followed by a rooted tree with N
edges (which we call a N -bulb); the N -bulbs are non-isomorphic to each other and each of them has
at most R automorphisms.

Each (L,M,N,R)-chandelier has K = L(N +M) edges in total. The chandelier structure plays a
crucial role in curbing the undesired correlation between different tree counts. Moreover, even though
chandeliers only occupy a vanishing fraction of all trees, by choosing the parameters appropriately,
we can ensure that |T ∗| = (1/α+ o(1))K , which grows almost at the same rate as the entire family
of trees. We refer the interested reader to [MWXY22] for more details. Below, we summarize the
final variance bounds.

E [Φii]
2

Var(Φij)
.

|T ∗|ρ2K ρ2>α,K�logn
= ω

(
n2
)

if j = i
nq
L2 =

L2=o(nq)
ω(1) if j 6= i.

With the above variane bound, we are able to establish the following main result.
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Theorem 4.2 ([MWXY22]). Assume that 0 < q ≤ 1/2 and ρ2 > α. Choose τ = CE [Φii] for any
constant 0 < C < 1. The following holds:

• (Partial recovery) For any constant δ ∈ (0, 1), there is a constant C(ρ, δ) > 0 depending only
on ρ and δ such that if nq ≥ C(ρ, δ), there is a subset I ⊂ [n] and a map π̂ : I → [n] satisfy
that π̂ = π|I with high probability and E[|I|] ≥ (1− δ)n.

• (Almost exact recovery) If nq = ω(1), there is a subset I ⊂ [n] and a map π̂ : I → [n] such
that π̂ = π|I and |I| = (1− o(1))n with high probability.

• (Exact recovery) If ρ > 0 and nq(q + ρ(1− q)) ≥ (1 + ε) log n for any constant ε > 0,1 then
the almost exact recovery can be further made exact with high probability using a seeded graph
matching based on the seed set I.

4.4 Limit of local algorithms

In the previous sections, we have estalished that efficient testing and recovery is possible if ρ2 > α.
You may wonder if there is any fundamental computational barrier at the Otter’s threshold. Well,
it turns out that ρ2 > α corresponds to the limit of local algorithms.

Definition 4.2. We say an estimator is a d-local algorithm if it outputs a set S of node pairs such
that

1 {(i, j) ∈ S} = f
(
NA
d (i), NB

d (j)
)
,

where f is a boolen function which maps two rooted subgraphs to {0, 1}, and NA
d (i) (resp. NB

d (j))
is the rooted subgraphs induced by vertices whose distance from i (resp. j) is at most d in A (resp.
B).

We say a local algorithm succeeds in partial recovery, if

• P [(i, π(i)) ∈ S] = Ω(1);

• P [(i, j) ∈ S] = o(1) for any j 6= π(i).

Note that the second bullet only requires that the probability of misclassifying a fake pair is o(1).
Since there are n(n− 1) fake pairs in total, S may still contain o(n2) fake pairs on average. Hence,
this is a quite weak requirement. Nevertheless, we will show that in the sparse regime q = λ/n for
a constant λ, as long as d = o(log n), ρ2 > α is necessary for any d-local algorithm to achieve the
above notion of partial recovery.

To establish such a result, we first reduce the partial recovery problem to a hypothesis testing
problem on trees. It is well-known that in the sparse regime, as long as d = o(log n), NA

d (i)
and NB

d (j) can be coupled as two Galton-Watson trees t, t′ with Poi(λ) offspring distribution. In
particular, we have

1The condition nq(q + ρ(1− q)) ≥ (1 + ε) logn is information-theoretically necessary, for otherwise the intersection
graph between A and B (under the vertex correspondence π) contains isolated vertices with high probability and
exact recovery is impossible.
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• j = π(i): t and t′ are correlated;

• j 6= π(i): t and t′ are independent.

Thus, the recovery problem reduces to a problem of detecting correlation in two Galton-Watson trees.
To formally define the hypothesis testing problem, we first rigorously define the Galton-Watson
measure on unlabeled, rooted trees. The following material is from [GMS22].

Definition 4.3 (Unlabeled rooted tree). Let Xd denote the set of all unlabeled rooted trees of
depth at most d defined recursively as follows.

• X0 = { }.

• For d ≥ 1, any t ∈ Xd can be represented as t = (Nτ )τ∈Xd−1
, where Nτ is the number of

children of the root whose subtrees are equal to τ.

Example:

• If d = 1 and t = , then t = (N = 2).

• If d = 2 and t = , then t = (N = 1, N = 1).

Definition 4.4 (Galton-Watson distribution). Let GWλ
d denote the Galton-Watson distribution on

Xd defined recursively as follows:

• GWλ
d = δ , where δ denotes a delta measure;

• Let t = (Nτ )τ∈Xd−1
∼ GWλ

d , if Nτ
i.i.d.∼ Poi

(
λGWλ

d−1(τ)
)
.

Example:

• If d = 1 and t = (N ) ∼ GWλ
1 , then N ∼ Poi(λ).

• If d = 2 and t = (Nτ )τ∈X1 , then N
i.i.d.∼ Poi

(
λGWλ

1( )
)
.

Definition 4.5 (Correlated Galton-Watson trees). Let P λ,sd denote the distribution of the two
correlated Galton-Watson trees defined recursively as follows:

• P λ,s0 = GWλ
0 ⊗GWλ

0 ;

• Let (t, t′) ∼ P λ,sd where t = (Nτ )τ∈Xd−1
and t′ = (Nτ ′)τ ′∈Xd−1

, if

Nτ = ∆τ +
∑

τ ′∈Xd−1

Mτ,τ ′

Nτ ′ = ∆′τ ′ +
∑

τ∈Xd−1

Mτ,τ ′ ,

where {∆τ}, {∆′τ ′}, {Mτ,τ ′} are mutually independent, and

∆τ
i.i.d.∼ Poi

(
λ(1− s)GWλ

d−1(τ)
)
, ∆′τ ′

i.i.d.∼ Poi
(
λ(1− s)(GWλ

d−1(τ ′))
)
, Mτ,τ ′

i.i.d.∼ Poi
(
λsP λ,sd−1(τ, τ ′)

)
.
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Note that P λ,0d = GWλ
d ⊗GWλ

d , which is the joint distribution of two independent Galton-Watson
trees.

Now, we are ready to formally define the tree correlation detection problem:{
H0 : (t, t′) ∼ P λ,0d , P λd
H1 : (t, t′) ∼ P λ,sd

.

Remark 4.1. Note that P λ,sd ( , ) = e−2λ+λs. It follows that

1

2

(
e−2λ+λs − e−2λ

)
≤ TV(P λ,sd , P λd ) ≤ 1− e−2λ.

Therefore, the weak detection always holds and the strong detection never holds. Inspired by the
partial recovery requirement, the right notion to consider is the so-called one-sided detection, that
is,

PH1(T (t, t′) = 1) = ω(1) positive power

PH0(T (t, t′) = 1) = o(1) vanishing type-I error.

The statistical limit for the one-sided detection is established in [GMS22].

Theorem 4.3 ([GMS22]). • If s ≤
√
α, then the one-sided detection is impossible for all λ;

• If s >
√
α, then there exists λ(s) > 0 such that for all λ ≥ λ(s), the one-sided detection is

feasible.

In this lecture, we focus on proving the negative result.

Proof of the negative direction. Let

Ld(t, t
′) =

P λ,sd (t, t′)

P λd (t, t′)

denote the likelihood ratio. Let Eλd denote the expectation taken under the measure P λd . Then it
suffices to show that

Eλd
[
L2
d

]
< +∞,

which implies that P λ,sd is asymptotically contiguous to P λd and hence the one-sided detection is
impossible. To bound the second moment, the key is to exploit an orthogonal decompsotion of Ld
in certain polynomial basis.

Lemma 4.1 ([GMS22]). For d ≥ 0, there exists a collection of {fλd,β}β∈Xd with fλd,β : Xd → R such
that

Ld(t, t
′) =

∑
β∈Xd

s|β|fλd,β(t)fλd,β(t′),

where

• fd, ≡ 1;
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• Et∼GWλ
d
[fλd,β(t)fλd,β′(t)] = 1 {β = β′}.

It turns out that given β = (βτ )τ∈Xd−1
, fλd,β(t) is a polynomial of entries {tτ}τ∈Xd−1

with degree at
most

∑
τ∈Xd−1

βτ . With this lemma, the second moment can be readily bounded as follows:

Eλd
[
L2
d

]
=
∑
β∈Xd

s2|β| ≤
∑
n≥0

s2nAn < +∞,

where An . n−3/2α−n denote the number of unlabeled, rooted trees with n edge due to (4.1), and
the last inequality holds by the assumption that s2 ≤ α.

It remains to prove Lemma 4.1. The proof follows from the induction on depth d. Here for simplicy
we verify the lemma for d = 1. The induction from d to d+ 1 follows from similar derivations but
with more tedious calculations. We refer the interested reader to [GMS22].

Proof of Lemma 4.1 for d = 1. Recall that any t = (N ) ∈ X1 can be identifies as an integer N .
Thus we can map two trees (t, t′) to two integers (`, `′). Define the characteristic function of

P λ,s1 : R2 → R as

P̂ λ,s1 (θ, θ′) , E
(`,`′)∼Pλ,s1

[
eiθ`+iθ′`′

]
.

By the definition of P λ,s1 , we can write ell = ∆ +M and `′ = ∆′ +M , where ∆ ∼ Poi(λ(1− s)),
∆′ ∼ Poi(λ(1− s)), and M ∼ Poi(λs) are mutually independent. Therefore,

P̂ λ,s1 (θ, θ′) = E
[
eiθ∆

]
E
[
eiθ
′∆′
]
E
[
ei(θ+θ

′)M
]

= exp
(
λ(1− s)(eiθ − 1) + λ(1− s)(eiθ′ − 1) + λs(ei(θ+θ

′) − 1)
)

= exp
(
λ(eiθ − 1) + λ(eiθ

′ − 1) + λs(eiθ − 1)(eiθ
′ − 1)

)
= exp

(
λ(eiθ − 1) + λ(eiθ

′ − 1)
)∑
m≥0

(λs)m

m!
(eiθ − 1)m(eiθ

′ − 1)m

=
∑
m≥0

smĝλ1,m(θ)ĝλ1,m(θ′),

where

ĝλ1,m(θ) =

√
(λs)m

m!
(eiθ − 1)m exp

(
λ(eiθ − 1)

)
.

Invertning the fourier transform, we get that

P λ,s1 (t, t′) =
∑
m≥0

smgλ1,m(`)gλ1,m(`′),

where

gλ1,m(`) =

∫ 2π

0

dθ

2π
e−iθ`ĝλ1,m(θ) =

√
m![xm]e−λ−

√
λx (λ+ x

√
λ)`

`!
,

where [xm] denotes the coefficient of the monomial xm in the following power series expansion. Note
that

P λ1 (t, t′) = P λ,01 (t, t′) = gλ1,0(`)gλ1,0(`′).
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Therefore,

L1(t, t′) =
∑
m≥0

smfλ1,m(`)fλ1,m(`′),

where

fλ1,m(`) =
gλ1,m(θ)

gλ1,0(θ)
=
√
m![xm]e−

√
λx

(
1 +

x√
λ

)`
.

Note that fλ1,m(`) is known as Charlier polynomial, which is the orthogonal polynomial under the
Poi(λ) distribution. In particular, it is easy to verify that

• fλ1,0(`) ≡ 1;

• E`∼Poi(λ)

[
fλ1,m(`)fλ1,m′(`)

]
= 1 {m = m′}.

4.5 Open questions

There are a number of interesting questions left open.

• (Dis)prove the computational hardness conjecture below Otter’s threshold in the sparse regime
nq = polylog(n);

• Imrpove over the Otter’s threshold in the dense regime with nq = nΩ(1). Note that partial
progress has been made in [DL22] under the Gaussian model in which efficient recovery is
achieved for ρ ≥ ε for any small constant ε.

• Low-degree polynomial method beyond the Erdős-Rényi model.
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