



































































































































CalculusofInterventions

Source Elements of Causal inference Peterset al Chap 6

Causality J Pearl 2009 ka text

Outline

Known SCM 6 15 Ny its associated

Markov DAG 9 V E and the Markov factorization

of the associated joint dist over xp Xd

An intervention Xj Nj occurs

Goal We want to compute the intervention distribution

but using only the observed distribution

Markov Factorization with the Intervention DAG

SN observational SCM with G V E

5 N the interventional SCM

of Tj

For concreteness say Xj Nj is the
intervention Further let the dist of Nj be Pca






































































































































intervention

a

9 associated withE T associated with

PEG xz ad P i Pai Observational

i dist factorization

PEG xd pad Me ad

I P'Gilead post
Intervention dist factorization

none of the factors
corresponding to non intervened nodes

charge

The above immediately follows from Theorem 3 Notes 2

i.e the Markov Property for a DAG

Further suppose Ita up I i.e an atomic
intervention occurs

Then we can write as






































































































































paid a ped CI p til PA X
xj a3

where Xp a

1 it x a

indicator function O otherwise

and are referred to as the truncated
factorization theorem other names as well see

section 6.6 in text for details

Conditioning do for nodes with no parents

Suppose that X is a node with no parents Then

peen a lx a p fÉ 3

II PhileasT
this variable






































































































































Now frm

paid
ti a

Go xd pad an.az ped

LIp'ailpan I
Tx a

ie p z ped x a p x2 xd

for X with no parents

Example Kidney stones see Notes 1 example 637
in text

Kidney stone recovery data from 700 patients

Successful Recovery Statistics

Overall Patients with Patients with

success Smallstones Large stones

Treatment a 78.1 931
OpenSurgery 273 350 81 87 192263

Treatment b 831 871 69t
smallpuncture 289 350 234 270 55 80
surgery

KEITEL






































































































































A causal quantitative model if above

2 sing e 9 Eyestone
0 OF

aside E
R recovery

success a
treatment

F Treatment e 0 Treatment a

1 Treatment b E
0 did notsucceed
I succeed

Treatment a fo open surgery
Treatment b 1 small puncture

d T D
Goal Compute paid

T o

R
i and Pr i

marginalize recovery v O

peridot a pf.az 1,0 o a

PE z
1,91 E

III PERAI I Petipa
and

p z paz pic Z Paz

Equivalently from i pod ca na II P'Gilead gas






































































































































X 7 03

pi'd
t

pfe 1 o o PECO 14

Pri z 110,1 i

1,7g
These quantities can be estimated purely
from observational data in Table

i ppl
idol

I 0.832 open surgery

better than small

Similarly ppl'd 1 20.782 punium
no paradox

Further the average causal effect for binary
treatments 0.832 0.782

Again as a reminder the example above shows that

intervening on T conditioning on

T.peR ile o p R 1 Z 0 4jPCR Z 1 D 4
4f ilzoedpfogpeg

Pile 10,014,1010 Pflpz loDPÉ lo Conditioning

Adjustment

Informally adjusting for a variable Z or Z is






































































































































a valid adjustmentset means that we can compute

intervention probabilities using conditional probabilities by
conditioning on Z and the intervention variable BUT

unconditioningONLY on the marginal of Z in the

original observational DAG SEM

This can be interpreted as an altered Total Probability
Theorem that relates interventional distributions to

observational distributions

Deff I a causal model Suppose that we intervene

on Xk i e do Xk 2k Consider any Xj PAK
Then Z E X Xd Xj Xia is called a

valid adjustment set if

pg
do

dog I p't i me z Pelz
Z

vectorof
realizations in

Example In the kidney stones example 23
i e we adjusted with Z size of stone to

compute the average causal effect on R recovery






































































































































In general we have seen that

pg
idol

x Pfi xj tax

We refer to the above effect as confounding In
general we need to find a valid adjustment set to
compute interventional prob from observational data when
Xk confounds the effect at Xj

Reffinding
The effect from Xk to Xj is

pg
idol

x Pfi xj tax

Getting around confounding Determining Valid
Adjustment Sets

Roadmap on finding Adjustment sets

1 What is the property we are looking for I IItals

2 Is it always better to use bigger adjustments sets i.e
adjust on as many

variables covariates as possible

No Berkson's Paradox






































































































































3 Characterizing Invariant Conditionals using d separation

4 Putting things together Adjustment theorem using
graphs and d separation

Invariant conditionals Z is a valid adjustment
set if the following invariance holds across the

observational and interventional Sams

paid
Xen

x a z p 75174,2

ypie
do Xen

z p
z

i e the conditional on the target above can be generalized

to sets instead of sulars is invariant when conditioned

on the adustment Z and the marginals of Z
remained unchanged

Motivation for the above defy of invariant conditionals

Re all from the definition of Z is a valid






































































































































adjustment that
Below only true when Z is a valid adjustment

pg
do

dog I p't i me z Pt
É

vectorof
realizations in

Further from the usual total probability theorem on

the altered Sam c do Xi one we have

pg
do

dog

2 pic
do Xia a

gym z pic
do Xia a

z

The above is always true for any Z

The invariant conditional definition comes from

term ly term matching of these two expressions above

Is it always better to have lager adjustment sets
i e if Z Zi Ze is a valid adjustment

set is it true that Z Z is also a






































































































































valid adjustment No

Berkson's Paradox Example 6.30 in text

The statement Why are handsome men such jerks
example originally from Ellenberg 2014 Berkson 1946.3

There are implicitly three variables here

Is the man in a relationship R O no

yes

Is the man handsome H 9 Yes

Is the man friendly F 0 no

yes

The underlying DAG is posited to be

OF H Man Bernoulli o 5
D f F I Ne n Bernoulli 0.5

R min H F Mr
nBernoulli 0.1






































































































































i e in words If a man is both friendly
and handsome he is more likely to be in a

relationship then not

In this case H HF but H F R

ie 2 0 is a valid adjustment set if we

intervened on H and observed the effect on f

ie paid i p I mi
F

peas
BUT if 2 R then Z anticorrelates
H and F and the adjustment is no longer
true

Characterizing valid adjustments using d separation
on an augmented graph

Recall pp 5 in Notes 4 copied below as an inset Let
us consider the augmented model ft that encodes






































































































































interventions through the AEyggitatelizeInterventionusing
new variables Ij for

SCM G S Pa over Xi Xd

simplicity let us assume the't
for each node x associate a new additional

we intervene only on node parent node Ij j sa d called

interventionvariables

K and with the associated
atevariable Ik with

Itd DPCI o E PCIe 0.5
YETI

at

Further for simplicity let
where Xj

fi PA Nj if Ija idle

Ij otherwise
us assume that when intervened

y when active encodes the intervention eXp Ke ie
Ij can take values Xi Kid3 with

an interventionpmf
Fie PAK Nic if Ik 0

Then pg
d X Pyke

gXx
Die if I I ii inierintitis É bi computed using the usual

conditional dist on the augmented G model

Then peg ped I o p Gen ped
and

petal ped I 1 p
d_

Gg ped

Theorem 3 Notes 2

Recall that from Global Markov Property for Gt
d separation conditional independence






































































































































ie with Y E x Xd WE Xi Xd
Y AW D

Y Hq I W P I www.I o

pecs no I Di from above

pets D pefylww.to p a la I D pad.cxiiadfy.ly

pacy fu paid
x.ci d

yyywy

o in summary sufficient conditions to
characterize a valid adjustment set are using

and X paid x a p aj a z
pedolxin z p z Io

Xj Ig I Xia Z and Z Ig I

target no that
we are intervening on

Finally the main theorem on valid adjustment
sets Prop 6.41 in text There are three






































































































































sufficient conditions I am listing only two please
see text for the third

Theorem Valid Adjustment Sets SCM G with

Xk the node where intervention occurs

Xj the target variable

Parental adjustment 2 PAK a valid

adjustment for Xie Xj

address both and

y it I
ZIG I

Backdoor criterion Z E Xi Xd LEX Xx

sit addresses

i Z contains NO descendants of Xk

ii Z blocks all paths from Xk to Xj
that passes through the parents of X

i.e backdoor paths addresses

directfath I itselfblocks
all






































































































































Iggy these are backdoor paths
from Xj to Xk

exple with a quph
010 0

ÉÉO
MItisYo partof

Xj Iq I Xk Z Above X Z

blocks all paths from I to Xj

Note that conditioning on Xx alone OPENS the
backdoor path from I to Xj because Xk is

a Collider Therefore we need to additionally add

Z to block this backdoor path

Z Hq I This is true because we are not

conditioning here on Xk or any of
its descendents Note that if descendants

of Xie were included then Xk its descendants

is a collider and unblocks the path from Ito

Z






































































































































Beyond Adjustments do calculus

In general we would like to compute interventional
dist from observational distributions Adjustment allowed

one approach to determine invariant conditionals More

generally we care about identifiability of an

interventional distribution meaning

pgidolx y be computed purely fromCan
observational distribution

do calculus provides a set of rules that allows

manipulation of a conditional dist in the intervention
SCM These rules provide other ways beyond

adjustment for computing intervention dist

Reff do calculus is at the core of Pearl's framework

for Causality See Pearl's book 2009 See also

text by Peters et al sec 6.7 for an abridged
discussion The discussion here follows the text by Petersetat






































































































































Setup SCM Q Graph G
X nodes on which intervention being done

y target variable s
X Y Z W disjoint sets of nodes

Insertion Deletions of Observations

Suppose Y Iq Z X W where G is the
DAG with incoming edges to X have been removed

Then

paid
x D

y z w paid
x

y w

Action Observation Exchange

suppose Y Hq Z X W where y is the DAG
where incoming edges tox and outgoing edges from Z

are removed Then

pe
do x 2 2

y w paid
x

y z w






















































































































Insertion Deletion of Actions

Suppose 7 Ig Z X W where G is the DAG
where incoming edges tox and incoming edges to 2 w

have been removed

Z W Xe E Z s.t Xe not an ancestor of W
in G

Then

paid
x 72 2

y w paid
x

y

Theorem 6.45 in text
The rules above are complete i.e all identifiable
intervention distributions can be computed using these

three rules

In addition I an algorithm by Tian 2002 that

can use these rules to find all identifiable intervention

distributions



Finally to conclude we state a result has been
proved by applying the rules above

Prop Front door Criterion Let be an

SCM with DAG G given by assume pecans o

I Note dottedcircle
means hidden latent
variable

Note that since U is not observed we cannot use backdoor

adjustment to study interventions on X and effect on Y

In fact there is no valid adjustment set in this case

Then peidolxing y Ep 2 peat z p's


