Learning Causal Models \overline{C} Elements of Causal Inference, Peterset al., Chap 7 Causality, $J.$ Pearl, $2009.$ \rightarrow (aka "text") Outline: A. Conditions for learning from (infinite) data B Algorithms for structure learning L PC Algorithm for CPDAGS L ICA Algorithm for LINGAMS. (A.) Sufficient Conditions for Learning with Infinites samples Suppose we are given ^a DAG G and ^a joint dist. $p(0)$ over $(\gamma_1, \dots, \gamma_d)$ that is consistent with ζ . $Prop: \exists$ SCM C that results in $P^{(\cdot)}$ with Markov factorization given by G Proof Strightformend. Iteratively construct the SCM on the DAG starting from the root node. / See Prop 7.1 in text for details) B

Given infinite samples from P(.), can we $2)$ recover G Not always: Our favorite (counter) example: Notes₂ $PP.24$ Recall our discussion on f aithfulness $-$ even with q_1 q_2 infinite samples we cannot α distinguish between the $\gamma = \alpha x + n_2$ $x = M'$ $\gamma = a x + w_2$
 $\gamma = x + b' x + w_2$
 $\gamma = x + b' x + w_2$
 $\gamma = x + b' x + w_2$ two graphs displayed here. N_1, N_2, N_3 indep , $N_1 \sim N(g_1)$ Suppose $C+ab=0$. Then, the two paths to Z in G cancel" each other out, meaning that $X \perp\!\!\!\!\perp Z$. However $X \perp\!\!\!\!\perp_Y$ Z . Faithfulness violation causes us to be unable to distinguish (vising exim infinite number of semples drawn from $p(n)$ between G_1 and G_2 .

 (3) what if we now impose faithfulness, i.e., we are given infinite samples from p(.) over (f_1, \dots, x_k) and are fold that $p(0)$ is generated by an SCM that is both Markovian (i.e., results $in a$ DAGG^{*}) and faithful.

 $Thm (Lrman 7.2 in krt)$: Jf C' \triangleq CPDAG (C^*) s.t. pl.) is Markovian and faithful writ. G
(proof immediate from Defn in inset below)

Summary: Markov + Faithful => We can learn the CPDAG if we have access to infinite samples

 https://arxiv.org/abs/1706.09141 frontiers in Genetics, June 2019 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558187/ Algorithms for Learning DAGS In addition to vefs so far, see also: Causal Structure Learning, C. Heinze-Deml, M. Maathuis and N. Meinshausen, arxiv: 1706.09141 Review of Causal Discovery Methods Based on Graphical Models, Clark Glymour, Kun Zhang and Peter Spirtes, C Algorithm. (Peter Spirtes, Clark Glymour) Ref: Causation, Rediction and Search, P. Spirtes, C. Glymour and R. Scheines, MIT Ress, 2001. This requires access to a CI Testing Algorithm, i.e., \wedge $+$ \mid \mid \preccurlyeq \wedge ger retu<mark>ins</mark> $x \times 1 | x$ C V \searrow \sim \sim \sim \sim \sim \sim

(Also, we assume access to a "norseless" CJ Tater, meaning that everything below is in the infinite sample limit. In practice, these algorithms are noisy as we work with only a finite number of samples. There are many other issues that come up then. We will discuss some of them later. For some refe on non-parametric CI testing, see: Kernel-based conditional independence test and application in causal recovery, K. Zhang, J. Peters, D. Janzing and $B.$ Scholkopf, UAI 2011. $(arXiv$ 1202.3775) (Also see Note 8. focassing on CI Testing). (Back to PC Algorithm). **(a)** Learn skeleton, i.e., the undirected graph, using CI Tester. (b) Orient edges (up to CDPAG).

(a) Learning skeleton. Key properties (Lemma 7.8 in tent) (i) $X - Y$ are adjacent \Longleftrightarrow they cannot be ^d separated by a_{γ} subset $x \in V \setminus X$ ii) X and I are not adjacent they are d-separated by either PA_{x} and or PAy. : Recipe for finding graph using (i): Pick any (x, y) Search over all $\mathcal{Z} \subseteq \bigcup \setminus \{X,Y\}$ using CL Tater, re, exaustively search if $XIII$ E for some E $TFno, then $X-Y$. (algo, impned by Y)$ PC Algorithm provides ^a structured way of executing this search, by using property (ii) above. If we can find a set \vec{z} s.t. ΔL 1) \vec{z} , then ΔT ! no edge e

- Start with complete (undirected) graph over all variable c Set $K = [\mathcal{Z}]$. $-(k=0)$ for each poir of rodes, chak if $k \perp y$. If you find any, then delete the edge. $-(k=1)$ For each triplet of nodes X, Y, Z , check $i\mathcal{F} \times \mathbb{L} \times \sqrt{2}$. If so, delete edge between $x-y$. $=(k=2)$ for each 4-typle of nodes $X,Y,(Z_1,Z_2),...$ Orienting edges Set of orientation rules known that are known to be complete (Meek's rules). $e^{i\theta}$ suppose we have $\begin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}$ where $x + y$ Z from part (a). Let it be a set of nodes that d -separates X and Y (recall d-separation \equiv CI because of faithfulness assumption)

Then $Z \notin \mathcal{Z} \iff$ \mathscr{F} $Summary$: Using d-separation \equiv CI, and cells to a CI Triter, we can learn the structure in a population (i.e., infinite sample) setting. $LINGAM$, and ICA Algorithm. Instead of allowing any CPDAG, we can impose restrictions on the SCM, which can allow structure learning We discuss one approach below using linear non Gaussian models LINGAM - Linear Non Gaussian Additive Model Ref: A linear non-Gaussian acylic model for causal discovery, S. Shimizu, P. Hoyer, A. Hyvarinen, A. Kerminen, JMLR 2006. $S(M)$ C \cdot X; $=$ $\sum a_{jk}x_k + N_j$ j j=1,2, ... d KE LH where $\{N_j\}$ are mutually independent and not

Gaussian and not-degenerate (e.g. strictly positive $densify)$, and $Ver(N_j) = 1$ (Aside: What does "not Gaussian" mean: the kay property will be that the joint part is not rotationally symmetric) In this case, we can learn the structure using ICA. $X_j = \sum_{k \in \mathcal{P}^k}$ KE YM $ik \wedge k + Nj$, $j=1,2,...,d$ $i.e., \quad \chi = \begin{pmatrix} x_1 \\ \vdots \\ x_k \end{pmatrix} \quad N = \begin{pmatrix} N_1 \\ \vdots \\ N_M \end{pmatrix} \quad : \text{Then,}$ $X = \lambda X + N$ Since the model is a DAG, we can always reindex variables sit. A is lover triangular. \therefore $X = (I-A)^{1}N$. $\triangleq BN$ The problem becomes: We are given samples of X and we need to learn B Note that we do not have access to samples of ^N that

generate X is we only know that N is indep across components with unit variance and is non-Gaussian. We now use ICA to determine B, a died matrix. Summary of ICA below: Let $B = UN^{\tau}$ Then, $X = UN^{\tau}N$ We need to learn U, V unitary matrices, and N a diagonal matrix. $x \times 10$ uninne $E[NX^T] = UNY^E[NN^T]JNV^T$ I (see polon) $Recall Var(N_i)=1, \{N_i\}$ indep. Further, WLOG, assume $E[N] = 0$ (else we can work with $\tilde{\gamma}$ = γ - $E[\tilde{x}]$, where $E[\tilde{x}]$ can be computed from observed data $\therefore E[XY^T] = UNY^T V N0^T = UN^2U^T \rightarrow 0$ Square, symmetric p.d. Covarience matrix Use PCA to determine R, U.

 $i \in \omega$ know $\{\lambda_j\}$, $j = 1, 2, \dots$, dand U a unitary matrix. N ow, $X = BN = (UN)(V^TN)$ $Y = \bigwedge^{\hspace{-3pt}0} Y \times \hspace{3pt} = \hspace{3pt} \overbrace{\hspace{3pt}I \hspace{3pt}} \hspace{3pt} V \hspace{3pt} \hspace{3pt} P \hspace{3pt} = \hspace{3pt} \overbrace{\hspace{3pt}I \hspace{3pt}} \hspace{3pt} V \hspace{3pt}$ <u>'</u> I on diagonal, zero elsewhere Since N is non-Gaussion, zer mean, unit variance noise, its joint pdf is NOT circularly symmetric. V is unitary matrix that rotates ^N Let ^R be any rotation unitary matrix Now, we have access to Y. Search over all RY s.t. $Z = RY$ is independent across coordinates Then, non-Gaussianity $\Rightarrow R = V$ Note: The search over rotations and the associated testing for independence across components has serveral heuristics in literature. Please check out $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ tutorial wikipedia for details