



































































































































LearningCansalModesource
Elements of Causal inference Peterset al Chap 7

Causality J Pearl 2009 ka text

Outline

A Conditions for learning from infinite data
B Algorithms for structure learning

L PC Algorithm for CPDAGS
L ICA Algorithm for LINGAMS

Sufficient Conditions for Learning with Infinite
samples

Suppose we are given a DAG G and a joint
dist pls over x Xd that is consistent with G

Prop F Sem G that results in pl with Markov
factorization given by G

Proof Straightforward Iteratively construct the Scm on

the DAG starting from the root node
see Prop 7.1 in text for details B






































































































































Given infinite samples from PC can we

recover G

Not always Our favorite counter example
Notes

z4

Recall our discussion on É
Éfaithfulness even with

9 92
infinite samples we cannot

distinguish between the Y a'x na
Z extbytns I Ix Nz

two graphs displayed here
Ni NzNj indep NinNCOD

Suppose Ct ab 0 Then the two paths
to Z inG cancel each otherout meaning
that X IZ However X Z

Faithfulness violation causes us to beunable to
distinguish using even infinite numberofsamplesdrawn frompin between G and 92

What if we now impose faithfulness i.e

we are given infinite samples from pl over

i Xd and are told that pls is generated

by an SCM that is both Markarian i.e results

in a DAGG and faithful

Thn Lemma 7.2in text I 9 CPDAG Gt s.t

pl is Markovian and faithful writ G
proof immediate from Defn in inset below






































































































































Pasted from Notes2 pp 20
MarkovEquivalenceofDAGS Example figure6.4 in Elementsof Causal Inference

book pp103Given a directed graph G V E let m G
be thesetof all distributions pl that have the Ox O

II EYEMarkovproperty wit G i.e
DAG G DAG 92

M g p PG ad has theGlobalMarkov
property writ 93

CPDAG.CA CPDAGGaDefinition MarkovEquivalenceofGraphs DAGS 9
and 92 are Markov Equivalent if Graphs G and 92 above are MarkovEquivalent

Mla M 92 Defy MarkovEquivalenceClass The setof all DAGs
that are Markov Equivalent to G is called its

In otherwords the graphs 9 and92 have the Markov Equivalence Class
same d separation relationships and this the
same factorization structure and CI relationships
among nodes

gig

É

CPDAGG V E directededge ee Eundirected edges iff all membersoftheMarkov
EquivalenceofG have thesame
directed edge all otheredge eee
are represented byundirectededge

Lemma 4 G andGa are Markov Equivalent

Defy Immorality A collection I three des

same imoralities
X Y Z form an immorality if X Y Z
i.e X and Z are parentsofY but there is
no edge between Xand Z This is
alsocalled a unshieldedcollider

Summary Markov faithful We can learn the
CPDAG if we

have access to infinite samples
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Algorithms for Learning DAGS

In addition to refs so far see also

Causal Structure Learning C Heinze Dent M Maathai's

and N Meinshausen arXiv 1706.09141

Review of Causal Discovery Methods Based on Graphical
Models Clark Glymour Kun Zhang and Peter Spirtes
frontiers in Genetics June 2019

PC Algorithm Peter Spirtes Clark Glymour

Ref Causation Prediction and Search P Spirtes C Glymour

and R Scheines MIT Press 2001

This requires access to a CI Testing Algorithm i e

XHY Z
x

ger
returns

x y iz

F E V TX Y3



Also we assume access to a noiseless CI Tester

meaning that everything below is in the infinite

sample limit In practice these algorithms are

noisy as we work with only a finite number of
samples There are many other issues that come

up then We will discuss some of them later

For some refs on non parametric CI testing see

Kernel based conditional independence test and application in

causal recovery K Zhang J Peters D Janzing and
B Scholkopf VAI 2011 arXiv 1202.3775

Also see Note 8 focussing on CI Testing

Back to PC Algorithm

Learn skeleton ie the undirected graph using
CI Tester
Orient edges upto CDP AG



Learning skeleton

Key properties lemma 7.8 in xD

i X Y are adjacent they cannot be
d separated by

any subset ZEV 4,7

di X and Y are not adjacent

they are d separated by either

Pax and or Pay

i Recipe for finding graph using i Pick any X Y

Search over all F EV X 3 using CI Tester
i.e exaustively search if

X HY F for some

If no then X Y tialgo improved by

PC Algorithm provides a structured way of executing
this search by using property it above If we

can find a set sit X 1412 then X T Y
no edge I



Start with complete undirected graph over all
variables

Set K 121

ko for each pair of nodes check if X Hy
If you find any then delete the edge

ki For each triplet of nodes X Y Z check

if X HY Iz If so delete edge between X Y

K 2 for each 4 tuple J nodes X Y 21,2 2

Orienting edges Set of orientation rules known that

are known to be complete Meek's rules

e g suppose we have Qf where X XY
O

from part Let be a set of nodes that

d separates X and Y recall d separation CI

because of faithfulness assumption



Then 24

Summary Using d separation E CI and cells
to a CI Tester we can learn the structure in

a population i.e infinite sample setting

LINGAM and ICA Algorithm

Instead of allowing any CP DAG we can impose
restrictions on the SCM which can allow structure

learning We discuss one approach below using
linear non Gaussian models

LINGAM Linear Non Gaussian Addite Model

Ref A linear non Gaussian acylic model for causal discovery
S Shimizu P Hoyer A Hyvarinen A Kerminen JMLR 2006

SCM Cl Xj Zajac Xk Nj j 1,2 d
KEPA

where Nj are mutually independent and not



Gaussian and not degenerate e.g strictly positive
density and Vara 1

Aside what does not Gaussian mean the key property

will be that the joint pelf is not rotationally
symmetric

In this case we can learn the structure using ICA

Xj Ea
Kepa

it k Nj 5 1,2 d

i.e X Id N Mna Then

X AX N

Since the model is a DAG we can always re index

variables sit A is lower triangular

I X I A N E BN

The problem becomes We are given samples of
X and we need to learn B Note that

we do not have access to samples of N that



generate X we only know that N is

indep across components with unit variance and
is non Gaussian

We now use ICA to determine B a ded
matrix Summary of ICA below

Let B UAV Then X Unven
We need to learn U V unitary matrices and

A a diagonal matrix

xx uninnevno

n E xx unremyunf
I see bets

Recall Var Nj 1 N indep Further WLOG
assume EEN 0 else we can work with

I X EE where Efx can be computed from
observed data

i EET On
Ig

no un've
Square symmetric
pad covariance matrix

Use PCA to determine N U



i We know lajl j 1,2 id and

U a unitary matrix

Now X BN UN N

Y T U'X EVEN IN
It on diagonal zero

elsewhere

Since N is non Gaussian Zero mean unit

variance noise its joint pdf is NOT circularly

symmetric I is unitary matrix that rotates
N Let R be any rotation unitary matrix

Now we have access to Y Search over all

RY sit 2 RY is independent across

coordinates Then non Gaussianity R V

Note The search over rotations and the associated

testing for independence across components has
several heuristics in literature Please check out

any tutorial wikipedia for details


