Learning Causal Models Source: (a) Elements of Causal Inference, Peters et al., Chap 7. (b) Cansality J. Pearl, 2009. 2) (aka "text") Outline: A. Conditions for learning from (infinite) data B. Algorithms for structure learning L PC Algorithm For CPDAGS L ICA Algorithm for LINGAMS. (A.) Sufficient Conditions for Learning with Infinite Samples (1) Suppose we are given a DAG G and a joint dist. p() over (x, ..., xd) that is consistent with G. Prop: 3 SCM C that results in P(.) with Markov Factorization given by G. Proof: Strightforward. Iteratively construct the SCM on the DAG starting from the not node. (See Pop 7.1 in text for details) R

2.) Given intinite samples from P(.), can we recover G ? Not always: Our favorite (counter) example: Notes 2, Pp.24 Recall our discussion on faithfulness - even with infinite samples, we cannot $X = N_1$ $\chi = N_1$ distinguish between the $\gamma = \alpha X + N_2$ $\gamma = 3 \times + 5 \times + N_2$ $Z = cX + bY + N_3.$ Z=N2 two graphs displayed here. NI, N2, N3 indep., NiNN (2,1). Suppose C+ab =0. Then, the two pathr to Z in G. "Concel" each other out, meaning that XILZ. However XIXgZ. Faithfulness violation causes us to be mable to distinguish (using exh infinite number of scriples drawn from p(1) between G, and G2.

(3.) What it we now impose taithfy)ness, i.e., we are given infinite samples from p(.) over (X1,...,Xd) and are fold that p(.) is generated by an SCM that is both Markovian (i.e., results in a DAG (*) and faithful.

Thm (Limma 7.2 in kxt): If G & CPDAG(G*) s.t. p(.) is Markovian and faithful w.r.t. q'. (proof immediate from Defin in inset below)

Pasted from Notes 2, pp 20.	
Markov Equivalence of DAGs.	Enomple (Figure 6.4 in Elements of Causel Inference
Given a directed graph $G = (V, E)$, let $\mathcal{M}(G)$ be the set of all distributions $P(\cdot)$ that have the	(\overline{x}) (\overline{x}) (\overline{x}) (\overline{x}) (\overline{x})
Markov property whit G, c.e.,	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
M(G)= Sp: P(x,, xd) has the Global Markov Property wirt G 3	The training of the training o
Definition: (Markov Equivalence of Graphs). DAGs G, and G2 are Markov Equivalent if	CPDAG.(G1) = CPDAG.(G2) Graphs G1 and G2 above are Markov Equivalent.
$\mathcal{M}(G_1) = \mathcal{M}(G_2)$	<u>Defn</u> : (Markov Equivalence Class) The set of all DAGo that are Markov Equivalent to G is called its
In other words, the graphs 9, and 92 have the some d-separation relationships, and this, the some factorization structure and CI relationships among nodes.	Markov Guivelence Class. Completed Barticly Directed Acyclic Graph Defn (CPDAG) Given a DAG G = (V, E),
<u>Defm:</u> (Skeleton of DAG) The skeleton of a DAG 9 consists of the vertices along with the undirected edges.	CPDAG(G)={(V,E): directed edge EEE'
in the second start of the	<u>itt</u> all members of the Markov Equivalence of G have the same directed edge; all other edges eEE are represented by undirected edges
DAG G Skelebr & G.	Lemma 4: G, and G2 are Markov Equivalent
<u>Defn</u> : (Immorality) A collection of three nodes (X, Y, Z) form an immorality if X -> Y < Z (i.e., X and Z are paunts of Y), but thex is no edge between X and Z. (This is	The graphs have the same skeleton and some inoralities.
no edge between X and Z. (This is also called a unshielded collider)	1

Summary: Markov + Faithful => We can learn the CPDAG if we have access to infinite samples

B. Algorithms for Learning DAGs. In addition to vefs so far, see also: Causal Structure Learning, C. Heinze-Denl, M. Maathuis and N. Meinshausen, arXiv: 1706.09)41 https://arxiv.org/abs/1706.09141 Review of Causal Discovery Methods Bajed on Graphical Models, Clark Glymour, Kun Zhang and Peter Spirtes, Functions in Genetics, June 2019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558187/ PC Algorithm. (Peter Spirtes, Clark Glymour) Ref: Causation, Rediction and Search, P. Spirtes, C. Glymour and R. Scheines, MIT Press, 2001. This requires access to a CI Testing Algorithm, i.e., CI Tester > returns > XXYZ $\leq \sqrt{\sqrt{2}} \chi, \chi$

(Also, we assume access to a "noriceless" CI Tater, meaning that everything below is in the infinite sample limit. In practice, these algorithms are noisy as we work with only a finite number of samples. There are many other issues that come up then. We will discuss some of them later. For some refr on non-parametric CI testing, see: Kerrel-bused conditional independence test and application in Causal recovery, K. Zhang, J. Peters, D. Janzing and B. Scholkopf, UAI 2011. (arXiv 1202.3775) (Also see Note 8. Focussing on CI Testing). (Back to PC Algorithm). (Learn Skeleton, i.e., the undirected graph, using CI Tater. (b) Orient edges (up to CDPAG).

(a) Learning skeleton. Key properties (Lemma 7.8 in text) (1) X-1 ave adjacent () they cannot be d-separated by any subset ZEVISX,73 (i) X and I are not adjacent => they are d-separated by either PAx and or PAy, . Recipe for finding graph using (i) : Pick any (x, Y) Search over all ZCV/EX, YS using CI Trater, (.e, exaustively search if XII7/Z for some Z (This was the basic algo, inproved by PC Algorithm -Dasie IF no, then X-Y. PC Algorithm provides a structured way of executing this search, by using property (11) above. If we can find a set Z sit. KLY/Z, then X+Y.

- Start with complete (undirected) graph over all Jariable (-Set K= [Z]. - (K=0) For each pair of rodes, check if K ILY. If you find any, then delete the edge. - (K=1) For each triplet of nodes X, Y, Z, check if XILY Z. IF so, delek edge between X-Y. - (K=2) For each 4-typle of nodes X, Y, (Z1, Z2), ... (Orienting edges: Set orientation rules known that ane known to be complete (Meek's rules). (.g. Suppose we have A. J., where X+Y from part @. Let Z be a set of nodes that d-separates X and Y. (recall d-separation = CI because of faithfulness assumption)

Then Z & Z <>> X Summary: Using d-separation = CI, and calls to a CI Tester, we can learn the structure in a population (i.e., infinite sample) setting. LINGAM, and ICA Algorithm. Instead of allowing any CPDAGS, we can impose restrictions on the SCM, which can allow structure learning. We discuss one approach below using linear non-Gaussian models LINGAM - Linear Non Gaussian Additive Model Ref: A linear non-Gaussian acylic model for Gusel discovery, S. Shimizu, P. Hoyer, A. Hyvarinen, A. Kerminen, JMLR 2006. $S(M C: X_{j} = \sum_{k \in PA_{j}} \alpha_{jk} \chi_{k} + N_{j}, j = 1, 2, ..., d.$ where {N; } are mutually independent and not

Gaussian and not-degenerate (e.g. strictly positive density), and $Var(N_j) = 1$ (Aside: What does "not Gaussian" mean: the key property will be that the joint pdf is not rotationally symmetric) In this case, we can learn the structure using ICA. $X_{j} = \sum_{k \in PA_{j}} \alpha_{jk} \chi_{k} + N_{j}, j = 1, 2, ..., d.$ $i \varphi_{-}, \quad \chi = \begin{pmatrix} \chi_{1} \\ \vdots \\ \chi_{n} \end{pmatrix} \qquad N = \begin{pmatrix} N_{1} \\ \vdots \\ N_{n} \end{pmatrix} \qquad : \quad \text{Then},$ $\chi = \lambda \chi + N$ Since the model is a DAG, we can always reindex variables s.t. A is lover triangular. X = (I - A)'N = BN. . The problem becomes: We are given samples of X, and we need to learn B. Mote that we do not have access to samples of N that

generate X ; we only know that N is intep. across components, with writ variance and is hon-Gaussian.

We now use ICA to determine B, a drd Martix. Summary of ICA below:

Let
$$B = UNV^T$$
 Then, $X = UNV^TN$
We need to learn U, V unitary matrices, and
A a diagonal matrix.

$$X X^{T} = U N V^{T} N N^{T} V N U^{T}$$

 $\therefore E[X X^{T}] = U N V^{T} E[N N^{T}] V N U^{T}$

Recell
$$Var(N;) = 1, \{N;\}$$
 indep. Further, WLOG,
assume $E[N] = 0$ (else we can work with
 $\tilde{X} = X - E[X]$, where $E[X]$ can be computed from
observed data).

$$\begin{array}{ccc} \vdots & E\left[x x^{T}\right] = & U \wedge v^{T} v \wedge v^{T} & = & U \wedge^{2} v^{T} & = \\ & & & \\ & & & \\ & &$$

.: We know [Nj], j=1,2,..., d and U a unitary matrix. $N_{0\omega}$, $\chi = BN = (UN)(V^TN)$ $\gamma = \chi' v' \chi = \tilde{\chi} v \eta = \tilde{v} \eta$ (lail on diagonal) 2 to diagonal, zero elsewhere

Since N is non-Gaussian, zer mean, unit variance noise, its joint part is NOT circularly Symmetric. V is unitery matrix that rotates N. Let R be any rotation (unitery matrix)

Now, we have alless to Y. Search over all RT s.t. Z=RY is independent across coordinates. Then, non-Gaussianity => R=V

Note: The search over votations and the associated testing for independence across components has several heuristics in literature. Please check out any tutorial wikipedia for details.