



































































































































TestingforconditionalIndependenI

Outline i Hardness of CI testing
ii kernel based Testing Kcie

Iii Conditional Randomization Testing CRD
Civ Classifier based testing CC T

FOCI Azadkia and Chatterjee
Vi Note on Tigramite Runge et al

Hardness of CI Testing

Ref The Hardness of CI Testing and the Generalized
Covariance Measure R Shah and J Peters March 2021

arXiv 1804.07203v5

Setup X Y Z a triplet of random vectors sit

X end y e Dd Ze 112 and
are continuous r o i.e their induced measure is

absolutely continuous wart the lebesgue measure

Eo re r is a valid disk over x z

and is abs cont art lebesgue measure






































































































































For any M 0 Eo m 86 r e Eo and

support X EE M M

supp Y E E M M

q supp Z
c Em m

Po pts pe Eo and p st XIY a

Q EE

Po m Po n Egm Qom Qon Eo m

compositetypothesistestiyi for any fixed ME
O o

o Null Hypothesis X 117 Z p p e Pom

1 Alternative X 4 2 q g e Qom

Goat Given n iid samples Gi yi Zi
we want to device a test

Yn Mtd
dz n

Co D 0 13
canbe randomized i e Un Gi Yi Ziti IindependentUniform o Dr v






































































































































A Type
I error

Level of Test Test has valid level de Con
at sample size n if

Pp Yn D e y'T
o

sup
PE Pom

4
Gi Yi Zi N P did i s in

i.e this is the analog of P Test is wrong Ho
in binary hyp testing null hypothesis

M H type I error

Power of Test Test has power B E 0,1 at sample
size n if

we would like B 1

inf Pg Yn 1 Z P
geQ.im

4
Gi Yi Zi Ng did i s in

This is the analog of P Test is correct H
in binary hyp testing

The main hardness theorem below






































































































































iii it Iii ij niiiiiaisiii.io is
any

randomized test Un for which

sup Pp Yn D E L
PE PoM

We have sup Pg Yn D E x
GEQom

This say that there is no test for CI that

can have low level and high power

Total Variation Tv Distance p g e Eo Then

I p gller II Pp Catz EA

Pg x Y z eA

Bored o

glgebfoverpdxtdytdzthi.ie
Fiiea.iMECGJ É É Em's.t
inf Il p glev 7424
P m






































































































































Theorem 2 says that there is no p satisfying
XHY IZ that is close in Tv distance to
a specific g

construction below

However for any g including the one constructed

above CI testing does not have any
reasonable

power

Ikeywa TV distance is not capturing hardness

of CI Testing See discussion after

Pop 5 in paper for more details

Instead of going through the proof I will
present an example below that lies at the heart

of their proof

Construction for X Y Z Salar triplet over C1,13
to show Theorem 2 and plausibility of Theorem 1

X Y Z each over El D with their marginal

dists Xn Uniform El D Y Unif Er D and
Zn Un if Ed I






































































































































q X Y z

Zn Uniff I I
A IZ with 4,4 Uniform 6,501 1,07

Z

Y

I
Coin

go q jo a

05,0

2 1

L

V

for the above q
observe that X Y are

correlated If X 0 then Yu Unit O

else if X O then Y n Unit E 1,03

Cory 17 44 X Y z
note X Y and ix Y Z

Now we construct É a new ro with






































































































































É f X Z as follows Consider the binary

expansion of Z In the mth bit delete the
value and replace it by O if X 0 and

I if X O

ex suppose the sample drawn Zi 0.010010
i e Zin 14 t 1324 0.2812 T

nthbit
Ibit

Then Zi 0 010010 if Rizo

O 01001 I if Xi o

Now consider X Y Z É

Then by choosing m to be large enough

I Zi Zi a 1 we can make the sample wise

distance to be arbitrarily small with error 12m

i From samples it is very hard to distinguish
between X Y Z and X Y E

The above construction encodes the sign of X
noiselessly in É Furthermore observe that there
is no additional information in X about y






































































































































once we know it's sign i.e

XIY E

Let p s t C Y E p
g

s t X T Z ng

The Ilp gller constant 0

independent of m

Why Use a Borel set that focusses only
on the nth coordinate of the binary expansion of
Z E and some large enough set in X XY

that includes both and quadrant Then
Z and E here a constant prob of differing in

the nth component and thus the TV distance

is lower bounded 70 independent of m

Now making m large we have fixed TV distance

lower bound but the samples gets closer Thus
it is hard to distinguish between p and q even

with many samples so Then I is plausible






































































































































In fact as shown in proof of Pop 2 in the paper
for any pepo Ilp gllev 424

sci figure's in paper tiardnesijit fidei
of proof of Thm 1

Remark 1 This crucially relies on Z being a

continuous r e so that we can hide the sign of
X with arbitrarily small perturbation in Iz El

Remark We saw that without assumptions the CI

composite hypothesis testing problem is untestable The

key issue is non smoothness of play z in Z

i.e a small perturbation in z drastically changed

the joint dist of X Y

In Theorem 2 we saw that we could have

a large TV distance in Aplay z g Gy z ler
and still have issues so controlling the distance

between pe Pom and g e Qom does not seem






































































































































useful Indeed as remarked in Meykov Balakrishnan

and Wasserman 2021 we need to control smoothness

of the conditional ph z A similar condition

was imposed for the CCIT algorithm to have guarantees
in Sen Suresh Karthikeyan DimaleisShakkoltai 2017

The condos would look something like

19649 z glass ziller s z uz zip
alternate
hypothesis
x 7 z

11 Ploetz Platz Itv LIZ 2112
null
hypothesis

I p 712 ply a Her 2112 2112 HEY z

Ref

Minimax optimal conditional independence testing M Neylon

S Balakrishnan and 2 Wasserman arXiv 2001.03039
2021

Model power conditional independence test R Sen A T

Suresh K Shanmugam A Dimakis and S Shakkottai

Near IPS 2017






































































































































Kernel based CI Testing

Ref Partial associative measures and an application to

qualitative regression J Daudin Biometrika 1980

A kernel statistical test for independence A Gretton
K Fukumizu C Teo L Song B Scholkopf A Smola
Near IPS 2007

Kernel based conditional independence test and application in






































































































































causal recovery K Zhang J Peters D Janzing and
B Scholkopf VAI 2011 arXiv 1202.3775

Warm up Jointly Gaussian X Y Z

for jointly Gaussian v us CI is equivalent to

independence testing of residuals i e

XIY z E Raz I R iz

partial correlation
coefficient

Px z
0

Rxz X EE z Ryz Y E 71 2

Partial correlation coefficient

for jointly Gaussian distributions conditional independence
can be tested through regression using partial
correlation coefficient






































































































































Recall that for Gaussians it suffices to check
second order statistics for independence i.e

It A 0

The partial correlation coefficient generalizes this to

allow tests for CI for joint Gaussian r.us

X IYA Z ED Pxe.z 0

We will define pre.z below WLOG all r.us

below have zero mean EG EG E 27 0

let a argmin E x 2232 E.IE
b argminEfCy pz3

B

i e regress X and Y each separately on Z

I ELY E a Z F ELY E DZ

are the associated least squares estimators for X Y

respectively






































































































































Rxz X EE ZT Ryz CY ELTZ
are the associated residuals

Then My.z Pr p
Cov Rx Re

Fia
Then Ay.z O E X HY z

Ieewhy
Z N

X a Zt Nz

f y Y b Z Nz

Ni Nz Nz N N o

mutually independent

In the model above it is clear from the
discussions in Note 2 d separation that X Y z

Now let us compute ftp.z Here I aZ

Tab Z Rxz x az RYE Y b2






































































































































E RxzRyz ab ab ab ab 0

To check the other way consider a model
with C 0 and check that Px z

0

More generally if Zi 22 Zm are the covariates

i e possible confounding r.es we regress X on

Z Zm and also regress Y on za Zm

Then compute pay.z be the correlation coefficient

of the residuals

Note If the r.us are not jointly Gaussian then
we cannot relate partial correlation to independence in

either direction Gee example 7.9 in text

Beyond Joint Gaussians A general criterion for CI

Dandin 80 A useful characterization of CI is

the following XE Rd Y E Nd Ze Rds






































































f RdxId IR
g
Rdx id e R

s t E FIX z Y E g y z3 a

IX 2 FIX z E fix Z z

g x 2 g x Z EGG Z z

IT Z ES ELEA E g 4,27 0

f f g square integrable sit E f X2 23 0

and E 94,27 2 0 ans

Other equivalent criteria Dandin 80 Zhangetat ID

Exz F square integrable ELF X2 27 0 as

Eyz g sq.int E go Z 27 0 as

Eyz g guilt 2 g y EG'm IZ

g sq int functionofY

i X HY Iz



Lii E ELTZ 514,27 0 t EE Exz
g G Etz

Iii Eff X Z g 4,273 0 t ÉeExz
g sq int ie

E 94,25 0

Iv Eff x Z G 4,27 0 H Fe Exz
g e Elz

M E FIX z g Y O t FEE z

g st Efg y

Constructing a test KCIT Operationalizing sin above

X E X M Y EY eld Ze Ze Ide

Kx positive definite kernel over R KMS thx analogous

Ky Kz

Characteristic kernel Ky is characteristic if Exnq f xD
Ex p fix A felly peg



Implication is that we can use a kernel to test for
one of the CI criteria above generalizes residue tests

The KCIT approach Zhang et al 2011 is the following

Samples N x Xn ye g yn 2 z Zn

In I III Ku I I 2

center
sample kernel

i Iii
Vanni

non negative eigenvalue

Y Ya Ya Ym X Ii Vasiwhere

Similarly for y Z and I x z

Fx E 0 regularizer parameter

Rz E Kate I Ka z Rz Ka Rz

Kyle RzKyRz



Constructing Test Statistic with finite samples with

asymptotic characterization

Tcf In trace Kaz Katz

Theorem Prop 5 in Kcie Under null hypothesis X Y 27

TIashs.me asymptotic dist i.e con in

distribution as Tcf where

Ti's I É Iori where

Xie are eigenvalues of Ww and I defined by

W I
vector defined

analogous as above for Ux
but for the appropriate centered

kernel matrices

and Eric are iid N 0,1 v.v or equivalently

ri are iid X distributed v v s
p tattler

G p ca

Rhine We an operational in the above for p value

testing Simulate Ti's are generate samples Compute test
statistic Te's from data See where Tots falls in Tc's
to compute signifance level to reject null hypothesis



Remartlandcantion All the properties and associated tests
are based on population i.e exact distribution based

characterization of conditional independence Unlike
the usual proofs where finite sample versions
follow from standard concentrations CI is quite
different

A generic way to break a CI test based on

exact distributions population statistics is the following
Recall the example above where the sign J X was

embedded in the mth bit thus slightly perturbing Z
to E through a sample peth couptig

Ho pm XIX Z

H q z I x y
Pm

encode sign of X in mthbit

will x Y Z
X Y Em

But G and pm are very close in samples i e

e y z ng
and x y 22 pm are only

112m apart in Z Eml

Goal Gian a tester with a CI characterization that is

based on infinite samples exact dist we want to construct



a hard counter example that will break it for any
finite n samples

Given n samples CI tester

Adviser Picks one of q or Pn i e signof
X in nth bit

Problem Impossible to reliably distinguish between these

with n samples as signal strength Yan is buried
in sampling noise Thus for any fixed n tester fails

Workaround Restrict null and alternatives to have

Lipschitz continuous conditionals Then all the algorithms

that we discuss based on asymptotic properties will work

Conditional Randomization Test Cre

Ref Panning for gold Model X knockoffs for high
dimensional controlled variable selection E Candes Y Fan

L Janson and J LV Journal of the Royal Statistical

Society Series B 2018 arXiv 1610.02351



Motivation is feature selection in regression

Setting X xz Xd Y

Goat want to check if X 17 X2 Xd

Assume We have exact knowledge of the joint
dist of Ci Xd i.e plan 2 xd

and we can generate samples from this disk

Suppose that T g X xz Xd Y is a

test statistic
e g
lasso

Leg T is the regattaregression coefficient of Xi
when we regress Y on X Xd

Mil Variable Let Xi n pl la xd
be a conditionally indep v.v ie given 42 7,43 29
i Xd xd we generate a sample from the dist

p 2124 xd With this construction observe that

duty variable

X Xz Xd Y X x2 Xd



The idea is that if X IT x2 Xs Xd
then T g x xz Xd and TE g Xi Xz xd Y

would have identical dist for every value of
Xi Xz Xd Y This is summarized in their

Lemma Lemma 4.1 in Condes et al 2018 below

key Observation Lemma 4.1 in paper Under

the null hypothesis

T x2 x Xd Y T X2 43 Xd Y

This provides an asympotic test for CI Simulate
a large number of samples XY as above Compute

the test statistic for each compute test statistic

for the real X compute p value

RemakI This test is based on a population property

under the null hypothesis namely the original and

simulated test statistics are identically distributed

However when dealing with finite samples some issue

that was discussed re untestability arises We need

to control smoothness of conditionals to provide any
finite sample guarantees note that the paper



does not address finite sample guarantees

Remark Condes et al 2018 provide an alternate

approach based on knockoff X random variables that
is computationally much lighter in the RT we need

to generate the test statistic for each sample The

power with knockoffs is somewhat worse please
read their paper for details

Classifier based Conditional Independence Test

Ref Model powered Conditional Independence Test R Sen

A T Suresh K Shanmugam A Dimakis S ShaleKottai

Near IPS 2017 arXiv 1709.06138

Setty X Y Z Xe Dd ye
112M Ze pd

Ho X ILY Z

H x y z

Given 3h iid sample

ai y Zi 3É play z

Under Ho play z p x y z I Pelz ply z plz



Assumptions Z a continuous v.v that satisfies smoothness

in both plz magid and conditional p y z
characterised through max eigenvalue of fisher information matrixof y v r t z

Algorithm

li
iin samples

Partition into 3 groups of n samples each

Nearestneighbourtootstrap

For each u y z E U2 find Cosy z EUz
Sit z't I NN z

neatest
neighbor

w v t 12 norm
Construct U x y z from above step

Note that if 7 2 then U'n pfalz p uz plz
irrespective of whether Ito is true or H is true



Let 0 x y z sit U n 0 fry z

Pacey 2 p Nz P 1 2 plz

Note Otp Theorem I in Sen et al
characterizes TV distance

between
and p g g yay

So far a iid samples fly z up labeled

a
n samples xyz Y labeled

Nott
i Samples in Uz are not iid because of the

I NN process that dips into the same pool Uz
for each y z EUz to construct x y z

ii samples in U are only approximately CI ie

0147,2 I
p 4z p y 2 plz



Trainaclassifer Dataset U n play z
UI v0 Cosy z

label samples in U as I n samples

samples in U2 as O n nearly CI samples

Intition UE U u e y are almost identically
distributed under Ho XHY 2 However

Ue U and y't Uz have different dist under H
thus note that this property is again a population property

and thus we need smoothness of conditionals to exploit
this property

abe

a
label

Split D 40 210901 o into train and

test Dtr and Dtest with Dirt Drat n

Using Der train a binary classifier sit the
classification function class is rich enough formally
the risk of the best classifier from this class is close
to that under the Baye's optimal classifier see Thm 2

in Sen et al

Using this classifier evaluate Deest using



ERM with risk function Rn In E X gT z
test sample I label

Result Implication of Thm 2 in Senet al

Under No 14 2 Rn I 0.5
with highenough

prob
Under H X 7 z Rns 0.58 n

x
dev p p 7,1 2


